


The difference between fcntl(), lockf and flock in linux
The difference between fcntl(), lockf and flock
——lvyilong316
These three The function of the function is to lock the file, so what is the difference between them? First of all, flock and fcntl are system calls, and lockf is a library function. lockf is actually a package of fcntl, so the underlying implementation of lockf and fcntl are the same, and the effect of locking files is the same. When analyzing the differences later, in most cases fcntl and lockf are put together. Let's first look at the use of each function, and look at the differences between each function in terms of usage and effects.
1.flock
l function prototype
#include
intflock(intfd,intoperation);//Applyorremoveanadvisorylockontheopenfilespecifiedbyfd, Just a suggestive lock
where fd is the file descriptor returned by the system call open. The operation options are:
LOCK_SH: shared lock
LOCK_EX: exclusive lock or exclusive lock
LOCK_UN: Unlocked.
LOCK_NB: Non-blocking (used with the above three operations)
Regarding the flock function, first of all, you must know that the flock function can only lock the entire file, not a certain part of the file. Lock, this is the first important difference from fcntl/lockf, which can lock a certain area of the file. Secondly, flock can only produce advisory locks. We know that Linux has mandatory locks (mandatorylock) and advisory locks (advisorylock). The so-called forced lock is easier to understand. It is the lock on your door. The most terrible thing is that there is only one key and only one process that can operate it. The so-called advisory lock is essentially a protocol. Before you access the file, you first check the lock. This is when the lock comes into play. If you are not so kind and just read and write regardless of the situation, then the advisory lock has no effect. effect. Those processes that comply with the protocol and check the lock before reading or writing are called cooperating processes. Again, the difference between flock and fcntl/lockf mainly lies in fork and dup.
(1) The lock created by flock is associated with the file open table entry (structfile), not fd. This means that after copying the file fd (through fork or dup), the lock can be operated through both fds (for example, locking through one fd and releasing the lock through another fd), that is to say, the child process inherits The lock of the parent process. However, when one of the fds is closed during the locking process, the lock will not be released (because the file structure is not released). The lock will not be released until all copied fds are closed. Test program into program one.
l Program 1
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>#include <stdio.h><br /></li><li>#include <unistd.h><br /></li><li>#include <stdlib.h><br /></li><li>#include <sys/file.h><br /></li><li>int main (int argc, char ** argv)<br /></li><li>{<br /></li><li>int ret;<br /></li><li>int fd1 = open("./tmp.txt",O_RDWR);<br /></li><li>int fd2 = dup(fd1);<br /></li><li>printf("fd1: %d, fd2: %d\n", fd1, fd2);<br /></li><li>ret = flock(fd1,LOCK_EX);<br /></li><li>printf("get lock1, ret: %d\n", ret);<br /></li><li>ret = flock(fd2,LOCK_EX);<br /></li><li>printf("get lock2, ret: %d\n", ret);<br /></li><li>return 0;<br /></li><li>}</li></ol>
The running result is as shown in the figure, for fd1 The lock does not affect the program's locking through fd2. For parent-child processes, refer to Procedure 2.
l Program 2
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>#include <stdio.h><br /></li><li>#include <unistd.h><br /></li><li>#include <stdlib.h><br /></li><li>#include <sys/file.h><br /></li><li>int main (int argc, char ** argv)<br /></li><li>{<br /></li><li>int ret;<br /></li><li>int pid;<br /></li><li>int fd = open("./tmp.txt",O_RDWR);<br /></li><li>if ((pid = fork()) == 0){<br /></li><li>ret = flock(fd,LOCK_EX);<br /></li><li>printf("chile get lock, fd: %d, ret: %d\n",fd, ret);<br /></li><li>sleep(10);<br /></li><li>printf("chile exit\n");<br /></li><li>exit(0);<br /></li><li>}<br /></li><li>ret = flock(fd,LOCK_EX);<br /></li><li>printf("parent get lock, fd: %d, ret: %d\n", fd, ret);<br /></li><li>printf("parent exit\n");<br /></li><li>return 0;<br /></li><li>}</li></ol>

The running result is as shown in the figure. The child process holds the lock. It does not affect the parent process acquiring the lock through the same fd, and vice versa.
(2) Use open to open the same file twice. The two fds obtained are independent (because the bottom layer corresponds to two file objects). It is locked through one of them and cannot be unlocked through the other, and in It cannot be locked until the previous one is unlocked. The test program is as follows:
l Program 3
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li style="text-align:left;">#include <stdio.h><br /></li><li style="text-align:left;">#include <unistd.h><br /></li><li style="text-align:left;">#include <stdlib.h><br /></li><li style="text-align:left;">#include <sys/file.h><br /></li><li style="text-align:left;">int main (int argc, char ** argv)<br /></li><li style="text-align:left;">{<br /></li><li style="text-align:left;">int ret;<br /></li><li style="text-align:left;">int fd1 = open("./tmp.txt",O_RDWR);<br /></li><li style="text-align:left;">int fd2 = open("./tmp.txt",O_RDWR);<br /></li><li style="text-align:left;">printf("fd1: %d, fd2: %d\n", fd1, fd2);<br /></li><li style="text-align:left;">ret = flock(fd1,LOCK_EX);<br /></li><li style="text-align:left;">printf("get lock1, ret: %d\n", ret);<br /></li><li style="text-align:left;">ret = flock(fd2,LOCK_EX);<br /></li><li style="text-align:left;">printf("get lock2, ret: %d\n", ret);<br /></li><li style="text-align:left;">return 0;<br /></li><li style="text-align:left;">}</li></ol>

The result is as shown in the figure. After acquiring the lock through fd1, it cannot Then acquire the lock through fd2.
(3) After using exec, the status of the file lock remains unchanged.
(4) flock cannot be used on NFS file systems. If you want to use file locks on NFS, please use fcntl.
(5) The flock lock is recursive, that is, two fds generated through dup or fork can be locked without deadlock.
2.lockf and fcntl
l function prototype
#include
intlockf(intfd,intcmd,off_tlen);
fd is the open file descriptor returned by open.
The value of cmd is:
F_LOCK: Lock the file mutually. If the file is locked, it will be blocked until the lock is released.
F_TLOCK: Same as F_LOCK, but if the file is locked, it will not block and return an error.
F_ULOCK: Unlocked.
F_TEST: Test whether the file is locked. If the file is not locked, it returns 0, otherwise it returns -1.
len: is the length to be locked from the beginning of the current position of the file.
Through the functions of function parameters, it can be seen that lockf only supports exclusive locks and does not support shared locks.
#include
#include
intfcntl(intfd,intcmd,.../*arg*/);
structflock{
...
shortl_type;/*Typeoflock:F_RDLCK,F_WRLCK,F_UNLCK*/
shortl_whence;/*Howtointerpretl_start:SEEK_SET,SEEK_CUR,SEEK_END*/
off_tl_start;/*Startingoffsetforlock*/
off_tl_len;/*Numberofbytestolock*/
pid_tl_pid;/*PIDofprocessblockingourlock(F_GETLKonly)*/
...
};
文件记录加锁相关的cmd分三种:
F_SETLK:申请锁(读锁F_RDLCK,写锁F_WRLCK)或者释放所(F_UNLCK),但是如果kernel无法将锁授予本进程(被其他进程抢了先,占了锁),不傻等,返回error。
F_SETLKW:和F_SETLK几乎一样,唯一的区别,这厮是个死心眼的主儿,申请不到,就傻等。
F_GETLK:这个接口是获取锁的相关信息:这个接口会修改我们传入的structflock。
通过函数参数功能可以看出fcntl是功能最强大的,它既支持共享锁又支持排他锁,即可以锁住整个文件,又能只锁文件的某一部分。
下面看fcntl/lockf的特性:
(1)上锁可递归,如果一个进程对一个文件区间已经有一把锁,后来进程又企图在同一区间再加一把锁,则新锁将替换老锁。
(2)加读锁(共享锁)文件必须是读打开的,加写锁(排他锁)文件必须是写打开。
(3)进程不能使用F_GETLK命令来测试它自己是否再文件的某一部分持有一把锁。F_GETLK命令定义说明,返回信息指示是否现存的锁阻止调用进程设置它自己的锁。因为,F_SETLK和F_SETLKW命令总是替换进程的现有锁,所以调用进程绝不会阻塞再自己持有的锁上,于是F_GETLK命令绝不会报告调用进程自己持有的锁。
(4)进程终止时,他所建立的所有文件锁都会被释放,队医flock也是一样的。
(5)任何时候关闭一个描述符时,则该进程通过这一描述符可以引用的文件上的任何一把锁都被释放(这些锁都是该进程设置的),这一点与flock不同。如:
fd1=open(pathname,…);
lockf(fd1,F_LOCK,0);
fd2=dup(fd1);
close(fd2);
则在close(fd2)后,再fd1上设置的锁会被释放,如果将dup换为open,以打开另一描述符上的同一文件,则效果也一样。
fd1=open(pathname,…);
lockf(fd1,F_LOCK,0);
fd2=open(pathname,…);
close(fd2);
(6)由fork产生的子进程不继承父进程所设置的锁,这点与flock也不同。
(7)在执行exec后,新程序可以继承原程序的锁,这点和flock是相同的。(如果对fd设置了close-on-exec,则exec前会关闭fd,相应文件的锁也会被释放)。
(8)支持强制性锁:对一个特定文件打开其设置组ID位(S_ISGID),并关闭其组执行位(S_IXGRP),则对该文件开启了强制性锁机制。再Linux中如果要使用强制性锁,则要在文件系统mount时,使用_omand打开该机制。
3.两种锁的关系
那么flock和lockf/fcntl所上的锁有什么关系呢?答案时互不影响。测试程序如下:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>#include <unistd.h><br /></li><li>#include <stdio.h><br /></li><li>#include <stdlib.h><br /></li><li>#include <sys/file.h><br /></li><li>int main(int argc, char **argv)<br /></li><li>{<br /></li><li>int fd, ret;<br /></li><li>int pid;<br /></li><li>fd = open("./tmp.txt", O_RDWR);<br /></li><li>ret = flock(fd, LOCK_EX);<br /></li><li>printf("flock return ret : %d\n", ret);<br /></li><li>ret = lockf(fd, F_LOCK, 0);<br /></li><li>printf("lockf return ret: %d\n", ret);<br /></li><li>sleep(100);<br /></li><li>return 0;<br /></li><li>}</li></ol>
测试结果如下:
$./a.out
flockreturnret:0
lockfreturnret:0
可见flock的加锁,并不影响lockf的加锁。两外我们可以通过/proc/locks查看进程获取锁的状态。
$psaux|grepa.out|grep-vgrep
123751188490.00.011904440pts/5S+01:090:00./a.out
$sudocat/proc/locks|grep18849
1:POSIXADVISORYWRITE1884908:02:8526740EOF
2:FLOCKADVISORYWRITE1884908:02:8526740EOF
我们可以看到/proc/locks下面有锁的信息:我现在分别叙述下含义:
1) POSIXFLOCK is relatively clear, which type of lock it is. The flock system call generates FLOCK, fcntl calls F_SETLK, F_SETLKW or lockf generates POSIX type. It can be seen that the types of locks generated by the two calls are different;
2) ADVISORY indicates that it is an advisory lock;
3) WRITE, as the name suggests, is a write lock and a read lock;
4) 18849 is the process ID that holds the lock. Of course, for locks of this type, there will be a situation where the process has exited.
5) 08:02:852674 indicates the primary device of the device where the corresponding disk file is located, the minor device number, and the inodenumber corresponding to the file.
6) 0 represents the actual position
7) EOF represents the end position. These two fields are more useful for fcntl types, and for flock they are always 0 and EOF.

根据美国司法部的解释,蓝色警报旨在提供关于可能对执法人员构成直接和紧急威胁的个人的重要信息。这种警报的目的是及时通知公众,并让他们了解与这些罪犯相关的潜在危险。通过这种主动的方式,蓝色警报有助于增强社区的安全意识,促使人们采取必要的预防措施以保护自己和周围的人。这种警报系统的建立旨在提高对潜在威胁的警觉性,并加强执法机构与公众之间的沟通,以共尽管这些紧急通知对我们社会至关重要,但有时可能会对日常生活造成干扰,尤其是在午夜或重要活动时收到通知时。为了确保安全,我们建议您保持这些通知功能开启,但如果

Android中的轮询是一项关键技术,它允许应用程序定期从服务器或数据源检索和更新信息。通过实施轮询,开发人员可以确保实时数据同步并向用户提供最新的内容。它涉及定期向服务器或数据源发送请求并获取最新信息。Android提供了定时器、线程、后台服务等多种机制来高效地完成轮询。这使开发人员能够设计与远程数据源保持同步的响应式动态应用程序。本文探讨了如何在Android中实现轮询。它涵盖了实现此功能所涉及的关键注意事项和步骤。轮询定期检查更新并从服务器或源检索数据的过程在Android中称为轮询。通过

为了提升用户体验并防止数据或进度丢失,Android应用程序开发者必须避免意外退出。他们可以通过加入“再次按返回退出”功能来实现这一点,该功能要求用户在特定时间内连续按两次返回按钮才能退出应用程序。这种实现显著提升了用户参与度和满意度,确保他们不会意外丢失任何重要信息Thisguideexaminesthepracticalstepstoadd"PressBackAgaintoExit"capabilityinAndroid.Itpresentsasystematicguid

1.java复杂类如果有什么地方不懂,请看:JAVA总纲或者构造方法这里贴代码,很简单没有难度。2.smali代码我们要把java代码转为smali代码,可以参考java转smali我们还是分模块来看。2.1第一个模块——信息模块这个模块就是基本信息,说明了类名等,知道就好对分析帮助不大。2.2第二个模块——构造方法我们来一句一句解析,如果有之前解析重复的地方就不再重复了。但是会提供链接。.methodpublicconstructor(Ljava/lang/String;I)V这一句话分为.m

如何将WhatsApp聊天从Android转移到iPhone?你已经拿到了新的iPhone15,并且你正在从Android跳跃?如果是这种情况,您可能还对将WhatsApp从Android转移到iPhone感到好奇。但是,老实说,这有点棘手,因为Android和iPhone的操作系统不兼容。但不要失去希望。这不是什么不可能完成的任务。让我们在本文中讨论几种将WhatsApp从Android转移到iPhone15的方法。因此,坚持到最后以彻底学习解决方案。如何在不删除数据的情况下将WhatsApp

原因:1、安卓系统上设置了一个JAVA虚拟机来支持Java应用程序的运行,而这种虚拟机对硬件的消耗是非常大的;2、手机生产厂商对安卓系统的定制与开发,增加了安卓系统的负担,拖慢其运行速度影响其流畅性;3、应用软件太臃肿,同质化严重,在一定程度上拖慢安卓手机的运行速度。

1.启动ida端口监听1.1启动Android_server服务1.2端口转发1.3软件进入调试模式2.ida下断2.1attach附加进程2.2断三项2.3选择进程2.4打开Modules搜索artPS:小知识Android4.4版本之前系统函数在libdvm.soAndroid5.0之后系统函数在libart.so2.5打开Openmemory()函数在libart.so中搜索Openmemory函数并且跟进去。PS:小知识一般来说,系统dex都会在这个函数中进行加载,但是会出现一个问题,后

苹果公司周二向开发人员发布了iOS 16.2 beta 2,因为该公司准备在 12 月向公众提供更新。正式地,它添加了新的 Freeform 协作应用程序和对 Home 应用程序的改进。在后台,9to5Mac发现 Apple 一直在开发一种新的“自定义辅助功能模式”,该模式将为 iPhone 和 iPad 提供“流线型”体验。自定义辅助功能模式这种代号为“Clarity”的新模式基本上用更精简的模式取代了 Springboard(这是 iOS 的主要界面)。该功能在当前测试版中仍对用户不可用,将


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
