首頁 >web前端 >H5教程 >前端實作連連看小遊戲實例碼

前端實作連連看小遊戲實例碼

PHP中文网
PHP中文网原創
2017-06-22 15:15:595654瀏覽

部落客玩了這麼久的連連看,居然是第一次發現,連連看最多只能有2個轉彎。 orz…

在網路上搜尋連連看的連線演算法判斷,並沒有找到很全面的,經過自己摸索之後,畫了下面的圖(圖有點醜…)

 

一. 2個物體在同一直線上,可以直接連通(這個不需要解釋啦)

#二.2個物體在同一直線上,中間有障礙物,不能直接連通(2個轉彎)

【循環遍歷黃線中的交點,例如A,B點,再判斷藍線有沒有障礙物,若沒有,則可以連通,若有,則繼續循環查找新的A,B點】

三. 2個物件不在同一直線上,一個轉彎

【2個物體分別在所在位置進行x,y軸的延伸,如下圖則交點為A,B。 只要判斷2個交點到2個物體直接是否有障礙物,若沒有,則可以連通】

 

## 四.2個物體不在同一直線上,連線有2個轉彎 

【同二的原理,如下圖,如果A,B 2個交點到物體均沒有障礙物,則可以連通。其中A點的縱座標和B相同】

另外一種情況,A,B 為2個物體所在x軸與中間y軸的交點,A,B的x座標必須相同,連線如下:

 

以上就是四個連線演算法判斷,畫圖只畫x軸的,每一種都按照同樣的原理增加y軸即可。可涵蓋所有連線判斷~

說完連線判斷的邏輯之後,寫一下整體的遊戲框架,遊戲基本上使用原生javascript,使用createjs遊戲引擎進行開發。

 

 程式碼想法:

1. 繪製遊戲畫圖,確定為多少宮圖,由於是在行動端的小遊戲,根據最小螢幕尺寸(iphone4  320*480 ),確定為7*9的宮圖。

1. 建立一個二維數組,如果某個座標上有物體,則設為1,否則為0

2.判斷該位置是否有物體,只需要判斷對應的二維數組上值是否為1,若為1,則有物體,否則沒有。

至於畫線,消除相同物體,只要會連線邏輯,肯定就會自己繪製線條,消除物體了,所以這篇文章就只講連線判斷啦~

 

在判斷能否連線的時候,肯定是從最簡單的方法開始判斷,如下:

同一直線能否直線連通--->如何一點被包圍,則不通--->兩點在一條直線上,不能直線連接但是可以連通---> 不在同一直線但是可以連通

getPath: function (p1, p2) {//开始搜索前对p1,p2排序,使p2尽可能的在p1的右下方。if (p1.x > p2.x) {var t = p1;
                p1 = p2;
                p2 = t;
            }else if (p1.x == p2.x) {if (p1.y > p2.y) {var t = p1;
                    p1 = p2;
                    p2 = t;
                }
            }//2点在同一直线上,可以直线连通if (this.hasLine(p1, p2).status) {return true;
            }//如果两点中任何一个点被全包围,则不通。else if (this.isWrap(p1, p2)) {return false;
            }//两点在一条直线上,不能直线连接但是可以连通else if (this.LineLink(p1, p2)) {return true;
            }//不在同一直线但是可以连通else if (this.curveLink(p1, p2)) {return true;
            }    
}
 

#
//判断同一条线能否连通,x轴相同或者y轴相同hasLine: function (p1, p2) {this.path = [];//同一点if (p1.x == p2.x && p1.y == p2.y) {return {
                    status: false};
            }if (this.onlineY(p1, p2)) {var min = p1.y > p2.y ? p2.y : p1.y;
                min = min + 1;var max = p1.y > p2.y ? p1.y : p2.y;for (min; min < max; min++) {var p = {x: p1.x, y: min};if (!this.isEmpty(p)) {
                        console.log(&#39;有障碍物p点………………&#39;);
                        console.log(p);this.path = [];break;
                    }this.path.push(p);
                }if (min == max) {return {
                        status: true,
                        data: this.path,
                        dir: &#39;y&#39; //y轴                    };
                }this.path = [];return {
                    status: false};
            }else if (this.onlineX(p1, p2)) {var j = p1.x > p2.x ? p2.x : p1.x;
                j = j + 1;var max = p1.x > p2.x ? p1.x : p2.x;for (j; j < max; j++) {var p = {x: j, y: p1.y};if (!this.isEmpty(p)) {
                        console.log('有障碍物p点………………');
                        console.log(p);this.path = [];break;
                    }this.path.push(p);
                }if (j == max) {return {
                        status: true,
                        data: this.path,
                        dir: 'x' //x轴                    };
                }this.path = [];return {
                    status: false};
            }return {
                status: false};//2点是否有其中一点被全包围,若有,则返回trueisWrap: function (p1, p2) {//有一点为空,则条件不成立if (!this.isEmpty({x: p1.x, y: p1.y + 1}) && !this.isEmpty({
                    x: p1.x,
                    y: p1.y - 1}) && !this.isEmpty({
                    x: p1.x - 1,
                    y: p1.y
                }) && !this.isEmpty({x: p1.x + 1, y: p1.y})) {return true;
            }if (!this.isEmpty({x: p2.x, y: p2.y + 1}) && !this.isEmpty({
                    x: p2.x,
                    y: p2.y - 1}) && !this.isEmpty({
                    x: p2.x - 1,
                    y: p2.y
                }) && !this.isEmpty({x: p2.x + 1, y: p2.y})) {return true;
            }return false;
        }  //两点在一条直线上,不能直线连接但是可以连通LineLink: function (p1, p2) {var pt0, pt1, pt2, pt3;//如果都在x轴,则自左至右扫描可能的路径,//每次构造4个顶点pt0, pt1, pt2, pt3,然后看他们两两之间是否连通if (this.onlineX(p1, p2)) {for (var i = 0; i < this.H; i++) {if (i == p1.y) {continue;
                    }
                    pt0 = p1;
                    pt1 = {x: p1.x, y: i};
                    pt2 = {x: p2.x, y: i};
                    pt3 = p2;//如果顶点不为空,则该路不通。if (!this.isEmpty(pt1) || !this.isEmpty(pt2)) {continue;
                    }if (this.hasLine(pt0, pt1).status && this.hasLine(pt1, pt2).status && this.hasLine(pt2, pt3).status) {this.drawLine(2, [pt0, pt3, pt1, pt2]);return [pt0, pt1, pt2, pt3];
                    }
                }
            }//如果都在y轴,则自上至下扫描可能的路径,//每次构造4个顶点pt0, pt1, pt2, pt3,然后看他们两两之间是否连通if (this.onlineY(p1, p2)) {for (var j = 0; j < this.W; j++) {if (j == p1.x) {continue;
                    }
                    pt0 = p1;
                    pt1 = {x: j, y: p1.y};
                    pt2 = {x: j, y: p2.y};
                    pt3 = p2;//如果顶点不为空,则该路不通。if (!this.isEmpty(pt1) || !this.isEmpty(pt2)) {continue;
                    }if (this.hasLine(pt0, pt1).status && this.hasLine(pt1, pt2).status && this.hasLine(pt2, pt3).status) {this.drawLine(2, [pt0, pt3, pt1, pt2]);return [pt0, pt1, pt2, pt3];
                    }
                }
            }
        }, //两点不在一条直线上,看是否可通curveLink: function (p1, p2) {var pt0, pt1, pt2, pt3;//特殊情况,先判断是否是一个转弯var spec1 = {x: p1.x, y: p2.y},
                spec2 = {x: p2.x, y: p1.y};if (this.isEmpty(spec1)) {if (this.hasLine(p1, spec1).status && this.hasLine(p2, spec1).status) {
                    console.log('1个转弯');this.drawLine(1, [p1, p2, spec1]);return [p1, p2, spec1];
                }
            }if (this.isEmpty(spec2)) {if (this.hasLine(p1, spec2).status && this.hasLine(p2, spec2).status) {
                    console.log('1个转弯');// console.table([pt0, spec2, pt3]);this.drawLine(1, [p1, p2, spec2]);return [p1, spec2, p2];
                }
            }//先纵向扫描可能的路径//同样,每次构造4个顶点,看是否可通for (var k = 0; k <= this.H; k++) {
                pt0 = p1;
                pt1 = {x: p1.x, y: k};
                pt2 = {x: p2.x, y: k};
                pt3 = p2;//2个交点都为空if (this.isEmpty(pt1) && this.isEmpty(pt2)) {//2个转弯if (this.hasLine(pt0, pt1).status && this.hasLine(pt1, pt2).status && this.hasLine(pt2, pt3).status) {
                        console.log('2个转弯');this.drawLine(2, [pt0, pt3, pt1, pt2]);return [pt0, pt3, pt1, pt2];
                    }
                }
            }//横向扫描所有可能的路径for (var k = 0; k <= this.W; k++) {
                pt0 = p1;
                pt1 = {x: k, y: p1.y};
                pt2 = {x: k, y: p2.y};
                pt3 = p2;//2个交点都为空if (this.isEmpty(pt1) && this.isEmpty(pt2)) {//2个转弯if (this.hasLine(pt0, pt1).status && this.hasLine(pt1, pt2).status && this.hasLine(pt2, pt3).status) {
                        console.log('2个转弯');this.drawLine(2, [pt0, pt3, pt1, pt2]);return [pt0, pt3, pt1, pt2];
                    }
                }
            }return false;
        }
連線判斷
 

#

以上是前端實作連連看小遊戲實例碼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn