How to use Celery to implement distributed task scheduling
Overview:
Celery is one of the most commonly used distributed task queue libraries in Python, which can be used to implement asynchronous task scheduling. This article will introduce how to use Celery to implement distributed task scheduling, and attach code examples.
- Installation and Configuration of Celery
First, we need to install the Celery library. Celery can be installed through the following command:
pip install celery
After the installation is complete, we need to create a Celery configuration file. Create a file called celeryconfig.py
and add the following content:
broker_url = 'amqp://guest@localhost//' # RabbitMQ服务器地址 result_backend = 'db+sqlite:///results.sqlite' # 结果存储方式(使用SQLite数据库) task_serializer = 'json' # 任务序列化方式 result_serializer = 'json' # 结果序列化方式 accept_content = ['json'] # 接受的内容类型 timezone = 'Asia/Shanghai' # 时区设置
- Create Celery App
In the code we need to import Celery library and create a Celery application. Here is an example:
from celery import Celery app = Celery('mytasks', include=['mytasks.tasks']) app.config_from_object('celeryconfig')
In the above code, we create a Celery application named mytasks
and apply the configuration in celeryconfig.py
into the Celery application.
- Create a task
Next, we need to create a task. A task is an independent function that can perform individual operations. Here is an example:
# tasks.py from mytasks import app @app.task def add(x, y): return x + y
In the above code, we have defined a task named add
to calculate the sum of two numbers.
- Start Celery Worker
To enable distributed execution of tasks, we need to start one or more Celery Workers to process tasks. Celery Worker can be started through the following command:
celery -A mytasks worker --loglevel=info
After the startup is completed, Celery Worker will listen and process tasks in the queue.
- Submitting tasks
In other code, we can submit tasks to the Celery queue. Here is an example:
# main.py from mytasks.tasks import add result = add.delay(4, 6) print(result.get())
In the above code, we import the add
task defined previously and then submit a task using the delay
method. The delay
method will return an AsyncResult
object, and we can get the result of the task by calling the get
method.
- Monitoring task completion status
We can use the AsyncResult
object to monitor the execution status of the task. The following is an example:
# main.py from mytasks.tasks import add result = add.delay(4, 6) while not result.ready(): print("Task is still running...") time.sleep(1) print(result.get())
In the above code, we monitor the execution status of the task through a loop. ready
The method will return a Boolean value indicating whether the task has been completed.
Summary:
This article briefly introduces how to use Celery to implement distributed task scheduling. By installing and configuring Celery, creating a Celery application, defining tasks, starting Celery Workers, and submitting tasks to the queue, we can implement distributed task scheduling. Using Celery can improve task execution efficiency and is suitable for situations where parallel computing or asynchronous processing is required.
The above is the detailed content of How to use Celery to implement distributed task scheduling. For more information, please follow other related articles on the PHP Chinese website!

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

InPython,a"list"isaversatile,mutablesequencethatcanholdmixeddatatypes,whilean"array"isamorememory-efficient,homogeneoussequencerequiringelementsofthesametype.1)Listsareidealfordiversedatastorageandmanipulationduetotheirflexibility

Pythonlistsandarraysarebothmutable.1)Listsareflexibleandsupportheterogeneousdatabutarelessmemory-efficient.2)Arraysaremorememory-efficientforhomogeneousdatabutlessversatile,requiringcorrecttypecodeusagetoavoiderrors.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Mac version
God-level code editing software (SublimeText3)
