With the development of the Internet, the scale of enterprise applications has gradually increased, and the configurations required for different business scenarios have become more and more complex. The management and maintenance of configurations are often a tedious and error-prone process. In order to solve these problems, the distributed configuration center came into being.
The distributed configuration center is a modular design that centralizes the configuration information of all applications and provides a friendly operation interface to facilitate managers to modify and publish configuration information. By centrally managing configuration information, system failures caused by configuration issues can be effectively reduced.
This article will introduce how to use go-zero to implement a simple distributed configuration center.
What is go-zero?
Go-Zero is a Go language microservice framework. It has the characteristics of high performance, easy scalability and ease of use. It is a way for Go language developers to quickly build high-performance, scalable and reliable microservice applications. One of the preferred frameworks.
In addition to providing microservice-related functions such as service registration, health check, current limiting circuit breaker, long connection management and service governance, Go-Zero also provides many tools to assist development, such as Rpc generation tools, http API generation tools, configuration center, log library, cache library, etc.
Implementation principle of distributed configuration center
The implementation of distributed configuration center needs to take into account the following aspects:
- Database storage: a relational database is required (such as MySQL, PostgreSQL, etc.) to store configuration information to ensure persistent storage of configuration information.
- Backend management: It is necessary to provide a backend management system through which administrators can add, delete, modify, check, and publish configuration information.
- Configuration file loading: An interface for loading configuration files needs to be provided for application calls to ensure that applications can obtain the latest configuration information.
- Scheduled refresh: It is necessary to implement the function of regularly refreshing configuration information to ensure timely update of data.
- Distributed consistency: When deploying multiple nodes, the consistency of configuration information needs to be considered to avoid errors caused by node out-of-synchronization.
Use go-zero to implement a distributed configuration center
This article will briefly introduce the process of using the go-zero framework to implement a distributed configuration center. The specific steps are as follows:
1. Install go-zero
To use go-zero, you need to install the relevant dependencies first:
go get -u github.com/tal-tech/go-zero
2. Create the database
First create the database and create the table and table structure As follows:
CREATE TABLE `config` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `app_name` varchar(255) DEFAULT '', `key_name` varchar(255) DEFAULT '', `value` varchar(1024) DEFAULT '', `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP, `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
3. Create a backend management system
The backend management system is mainly used for adding, deleting, modifying, checking and publishing operations on configuration information. In the go-zero framework, you can use the goctl tool to quickly generate management system-related code:
goctl api new -api config -dir config/api
The generated code is located in the config/api directory and needs to be adjusted according to actual needs.
4. Implement configuration file loading
Generate an rpc service named config through the goctl tool, and load the configuration file by calling its interface.
The service interface is defined as follows:
type Config interface { GetConfig(ctx context.Context, req *model.GetConfigReq) (*model.GetConfigResp, error) WatchConfig(ctx context.Context, req *model.GetConfigReq) (*model.GetConfigResp, error) }
5. Implementing scheduled refresh
In order to implement the scheduled refresh function, you can use etcd related tools in the go-zero framework.
First you need to install etcd:
go get -u go.etcd.io/etcd/client/v3
Then set the address and port of etcd in the configuration file:
[etcd] null=127.0.0.1:2379
Finally, implement the scheduled refresh logic in the code:
func RefreshConfig() { etcdCli, err := clientv3.New(clientv3.Config{ Endpoints: *conf.Etcd, DialTimeout: time.Second * 3, }) if err != nil { logx.Errorf("err: %v", err) return } defer etcdCli.Close() for { ctx, cancel := context.WithTimeout(context.Background(), time.Second*5) resp, err := etcdCli.Get(ctx, *conf.EtcdKey) if err != nil { logx.Errorf("err: %v", err) cancel() continue } if len(resp.Kvs) == 1 { var configMap map[string]string err = json.Unmarshal(resp.Kvs[0].Value, &configMap) if err != nil { logx.Errorf("err: %v", err) } else { cacheConfigMap.Lock() cacheConfigMap.data = configMap cacheConfigMap.Unlock() logx.Info("Refresh config success") } } cancel() time.Sleep(time.Second * 10) } }
6. Achieve distributed consistency
In order to achieve distributed consistency, etcd related tools need to be used in the go-zero framework.
First you need to install etcd:
go get -u go.etcd.io/etcd/client/v3
Then implement etcd-related distributed lock logic in the code:
func Lock() error { etcdCli, err := clientv3.New(clientv3.Config{ Endpoints: *conf.Etcd, DialTimeout: time.Second * 3, }) if err != nil { logx.Errorf("err: %v", err) return err } defer etcdCli.Close() var s *concurrency.Session var m *concurrency.Mutex for { opTimeoutCtx, cancel := context.WithTimeout(context.Background(), time.Second) s, err = concurrency.NewSession(etcdCli, concurrency.WithContext(opTimeoutCtx), concurrency.WithTTL(int32(*conf.LockTtl))) if err != nil { logx.Errorf("create etcd session error: %v", err) cancel() time.Sleep(time.Second) continue } opTimeoutCtx, cancel = context.WithTimeout(context.Background(), time.Second) m = concurrency.NewMutex(s, *conf.EtcdKey) err = m.Lock(opTimeoutCtx) if err != nil { logx.Errorf("etcd lock failed: %v", err) cancel() time.Sleep(time.Second) continue } break } cacheConfigMap.Lock() defer cacheConfigMap.Unlock() defer func() { if m != nil { err = m.Unlock(context.Background()) if err != nil { logx.Errorf("etcd unlock failed: %v", err) } } }() defer func() { if s != nil { s.Close() } }() return nil }
Conclusion
This article introduces how to use The go-zero framework implements a simple distributed configuration center. By using go-zero's high performance, easy scalability, and ease of use, we can quickly build a highly available distributed configuration center in a short time, effectively helping us reduce system failures caused by configuration issues.
The above is the detailed content of Using go-zero to implement distributed configuration center. For more information, please follow other related articles on the PHP Chinese website!

在分布式系统的架构中,文件管理和存储是非常重要的一部分。然而,传统的文件系统在应对大规模的文件存储和管理时遇到了一些问题。为了解决这些问题,SeaweedFS分布式文件系统被开发出来。在本文中,我们将介绍如何使用PHP来实现开源SeaweedFS分布式文件系统。什么是SeaweedFS?SeaweedFS是一个开源的分布式文件系统,它用于解决大规模文件存储和

使用Python做数据处理的数据科学家或数据从业者,对数据科学包pandas并不陌生,也不乏像云朵君一样的pandas重度使用者,项目开始写的第一行代码,大多是importpandasaspd。pandas做数据处理可以说是yyds!而他的缺点也是非常明显,pandas只能单机处理,它不能随数据量线性伸缩。例如,如果pandas试图读取的数据集大于一台机器的可用内存,则会因内存不足而失败。另外pandas在处理大型数据方面非常慢,虽然有像Dask或Vaex等其他库来优化提升数

随着互联网的快速发展,网站的访问量也在不断增长。为了满足这一需求,我们需要构建高可用性的系统。分布式数据中心就是这样一个系统,它将各个数据中心的负载分散到不同的服务器上,增加系统的稳定性和可扩展性。在PHP开发中,我们也可以通过一些技术实现分布式数据中心。分布式缓存分布式缓存是互联网分布式应用中最常用的技术之一。它将数据缓存在多个节点上,提高数据的访问速度和

什么是分布式计数器?在分布式系统中,多个节点之间需要对共同的状态进行更新和读取,而计数器是其中一种应用最广泛的状态之一。通俗地讲,计数器就是一个变量,每次被访问时其值就会加1或减1,用于跟踪某个系统进展的指标。而分布式计数器则指的是在分布式环境下对计数器进行操作和管理。为什么要使用Redis实现分布式计数器?随着分布式计算的普及,分布式系统中的许多细节问题也

一、Raft 概述Raft 算法是分布式系统开发首选的共识算法。比如现在流行 Etcd、Consul。如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求。比如分布式配置系统、分布式 NoSQL 存储等等,轻松突破系统的单机限制。Raft 算法是通过一切以领导者为准的方式,实现一系列值的共识和各节点日志的一致。二、Raft 角色2.1 角色跟随者(Follower):普通群众,默默接收和来自领导者的消息,当领导者心跳信息超时的

Redis实现分布式配置管理的方法与应用实例随着业务的发展,配置管理对于一个系统而言变得越来越重要。一些通用的应用配置(如数据库连接信息,缓存配置等),以及一些需要动态控制的开关配置,都需要进行统一管理和更新。在传统架构中,通常是通过在每台服务器上通过单独的配置文件进行管理,但这种方式会导致配置文件的管理和同步变得十分复杂。因此,在分布式架构下,采用一个可靠

Redis实现分布式对象存储的方法与应用实例随着互联网的快速发展和数据量的快速增长,传统的单机存储已经无法满足业务的需求,因此分布式存储成为了当前业界的热门话题。Redis是一个高性能的键值对数据库,它不仅支持丰富的数据结构,而且支持分布式存储,因此具有极高的应用价值。本文将介绍Redis实现分布式对象存储的方法,并结合应用实例进行说明。一、Redis实现分

随着互联网技术的发展,对于一个网络应用而言,对数据库的操作非常频繁。特别是对于动态网站,甚至有可能出现每秒数百次的数据库请求,当数据库处理能力不能满足需求时,我们可以考虑使用数据库分布式。而分布式数据库的实现离不开与编程语言的集成。PHP作为一门非常流行的编程语言,具有较好的适用性和灵活性,这篇文章将着重介绍PHP与数据库分布式集成的实践。分布式的概念分布式


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)
