If you encounter a function declaration without a function body, it means that the function is not implemented in Go.
package math func Sin(x float64) float //implemented in assembly language
If a variable name is set for each return value of a function, it will be initialized with the corresponding zero value, and the operand will be omitted in the return statement of the function. This usage is called bare return.
The error handling in Go is customary to perform a series of initialization checks first, and process the code that handles the failure logic first, and then the actual logic of the function. This makes the code more concise and avoids too many errors. Hierarchy.
When defining a function, you can use the function type as a parameter or as a return type. Is it a bit like a delegate to achieve closure? There are also anonymous functions, which are similar to lambda expressions. The strings.Map function can be used for experimentation.
func squares() func() int { var x int return func() int { x++ return x * x } } func main() { f := squares() fmt.Println(f()) // "1" fmt.Println(f()) // "4" fmt.Println(f()) // "9" fmt.Println(f()) // "16" }
There are variable references in anonymous functions and squares. This is why function values are reference types and function values are not comparable. Go uses closure technology to implement function values, and Go programmers also call function values closures.
Pay attention to the example program in the anonymous function section of the golang Bible.
The variable parameter function of the Go language is very easy to use. You can pass multiple parameters of the same type, or you can directly pass in a slice of this type (note that you must use the... mark when passing in the slice. I I think it is to distinguish the same slice parameters, after all, the two are still somewhat different). If you want to use different types of variable parameters, then use the universal interfac{}, and just parse the variable parameters in the function body like a slice. .
Until the function containing the defer statement is executed, the function after the defer will not be executed, regardless of whether the function containing the defer statement ends normally through return or ends abnormally due to panic. You can execute multiple defer statements in a function, and their execution order is opposite to the declaration order
var mu sync.Mutex var m = make(map[string]int) func lookup(key string) int { mu.Lock() defer mu.Unlock() return m[key] }
When debugging complex programs, the defer mechanism is also often used to record when to enter and exit a function.
func bigSlowOperation() { defer trace("bigSlowOperation")() // don't forget the extra parentheses // ...lots of work… time.Sleep(10 * time.Second) // simulate slow operation by sleeping } func trace(msg string) func() { start := time.Now() log.Printf("enter %s", msg) return func() { log.Printf("exit %s (%s)", msg,time.Since(start)) } }
We only need to name the return value of double first, and then add a defer statement. We can output the parameters and return value every time double is called.
func double(x int) (result int) { defer func() { fmt.Printf("double(%d) = %d\n", x,result) }() return x + x } _ = double(4) // Output: // "double(4) = 8"
To facilitate problem diagnosis, the runtime package allows programmers to output stack information. In the following example, we output stack information by delaying the call to printStack in the main function.
gopl.io/ch5/defer2 func main() { defer printStack() f(3) } func printStack() { var buf [4096]byte n := runtime.Stack(buf[:], false) os.Stdout.Write(buf[:n]) }
It is a bit strange that field names and method names with the same name cannot be defined for a structure.
Function pointer: There are actually function pointers in go. Let’s use go language to implement the table-driven mode.
package main import ( "fmt" ) func add(a int, b int) int { return a + b } func sub(a int, b int) int { return a - b } func main() { fm := make(map[int]func(int, int) int) fm[1001] = add fm[1002] = sub protocol := 2001 i := 1 j := 2 if func_handle, ok := fm[protocol]; ok { println(func_handle(i, j)) } else { fmt.Printf("protocol: %d not register!", protocol) } }
Return local variable pointer:
Unlike C language, GO functions can return local change pointers, and the compiler will use escape analysis to decide whether to Allocate memory on the heap.
You can disable function inlining through the -gcflags "-l -m" parameter when compiling. Function inlining will have some impact on memory allocation, but the details are unclear.
There is no so-called reference passing for function parameters, they are all passed by value. The only difference is whether a copy object or a pointer is passed. In C language, it is generally recommended to pass pointer parameters to avoid copying objects and improve efficiency.
But in go, the copied pointer will extend the life cycle of the target object, and may also cause it to be allocated on the heap. The performance consumption will be added to the cost of heap memory allocation and garbage collection, and in Copying small objects on the stack is actually very fast, so if the object is not particularly large or the original object really needs to be modified, there is generally no need to pass pointer parameters. In concurrent programming, the use of immutable objects (read-only or copied) is also advocated, which can eliminate the trouble of data synchronization.
The following will allocate memory on the heap. When compiling, pass -gcflags "-m" to view the assembly code:
func test(p *int) { go func() { println(p) }() } func main() { x := 100 p := &x test(p) }
Use outgoing parameters, it is recommended to use the return value, you can also use two Level pointer:
func test(p **int) { x := 100 *p = &x } func main() { var p *int test(&p) println(*p) }
For more go language knowledge, please pay attention to the go language tutorial column on the PHP Chinese website.
The above is the detailed content of Introduction to functions and methods in go language. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除字符串的方法:1、用TrimSpace()来去除字符串空格;2、用Trim()、TrimLeft()、TrimRight()、TrimPrefix()或TrimSuffix()来去除字符串中全部、左边或右边指定字符串;3、用TrimFunc()、TrimLeftFunc()或TrimRightFunc()来去除全部、左边或右边指定规则字符串。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)
