Printing Full NumPy Arrays
When working with NumPy arrays, you may encounter truncated representations when printing them. This can be frustrating if you need to view the complete array for debugging or analysis purposes. To address this issue, you can utilize numpy.set_printoptions.
numpy.set_printoptions allows you to configure various printing options for NumPy arrays. By setting threshold to the maximum value of sys.maxsize, you can increase the threshold at which NumPy prints an abbreviated representation of the array.
Here's how to use it:
import sys import numpy numpy.set_printoptions(threshold=sys.maxsize)
This will set the threshold to the maximum possible value, ensuring that the complete NumPy array is printed, regardless of its size.
For example, if you have a large array of shape (250, 40) as shown below:
>>> numpy.arange(10000).reshape(250, 40)
The default printing will truncate the array:
array([[ 0, 1, 2, ..., 37, 38, 39], [ 40, 41, 42, ..., 77, 78, 79], [ 80, 81, 82, ..., 117, 118, 119], ..., [9880, 9881, 9882, ..., 9917, 9918, 9919], [9920, 9921, 9922, ..., 9957, 9958, 9959], [9960, 9961, 9962, ..., 9997, 9998, 9999]])
However, using numpy.set_printoptions, you can print the entire array:
>>> numpy.set_printoptions(threshold=sys.maxsize) >>> numpy.arange(10000).reshape(250, 40) [[ 0 1 2 ... 37 38 39] [ 40 41 42 ... 77 78 79] [ 80 81 82 ...117 118 119] ... [9880 9881 9882 ...9917 9918 9919] [9920 9921 9922 ...9957 9958 9959] [9960 9961 9962 ...9997 9998 9999]]
By adjusting the threshold parameter, you can control how NumPy prints arrays. This allows you to balance readability with the ability to view small or large arrays in their entirety.
The above is the detailed content of How to Print Full NumPy Arrays Without Truncation?. For more information, please follow other related articles on the PHP Chinese website!

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

InPython,a"list"isaversatile,mutablesequencethatcanholdmixeddatatypes,whilean"array"isamorememory-efficient,homogeneoussequencerequiringelementsofthesametype.1)Listsareidealfordiversedatastorageandmanipulationduetotheirflexibility

Pythonlistsandarraysarebothmutable.1)Listsareflexibleandsupportheterogeneousdatabutarelessmemory-efficient.2)Arraysaremorememory-efficientforhomogeneousdatabutlessversatile,requiringcorrecttypecodeusagetoavoiderrors.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Mac version
God-level code editing software (SublimeText3)
