搜索
首页科技周边人工智能可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
编辑 | X

几十年来,核聚变释放能量的「精妙」过程一直吸引着科学家们的研究兴趣。

现在,在普林斯顿等离子体物理实验室(PPPL)中,科学家正借助人工智能,来解决人类面临的紧迫挑战:通过聚变等离子体产生清洁、可靠的能源。

与传统的计算机代码不同,机器学习不仅仅是指令列表,它可以分析数据、推断特征之间的关系,并从新知识中学习和适应。

PPPL 研究人员相信,这种学习和适应能力可以通过多种方式改善他们对聚变反应的控制。这包括完善超热等离子体周围容器的设计、优化加热方法以及在越来越长的时间内保持反应的稳定控制。

近日,PPPL的AI研究取得重大成果。PPPL研究人员解释了他们如何利用机器学习来避免磁扰动、聚变等离子体的稳定性。这一成果对于实现可持续的聚变能源具有重要意义。通过对大量数据的分析和训练,研究人员成功地开发出一种机器学习模型,能够准确

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊
图示:上面显示的两个托卡马克(DIII-D 和 KSTAR)装置中部署了用于检测和消除等离子体不稳定性的机器学习代码。(来源:通用原子公司和韩国聚变能源研究所)

该讨论文的主要作者,PPPL研究物理学家SangKyeun Kim表示:“研究结果令人印象深刻,因为我们能够够使用相同的代码在两个不同的托卡马克装置上实现这些结果。”

相关研究以《Highest fusion performance without harmful edge energy bursts in tokamak》为题,发布在《Nature Communications》上。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

论文链接:https://www.nature.com/articles/s41467-024-48415-w

抑制聚变中「边缘爆发」

为了利用聚变能源市场上具有经济竞争力,它必须在维持聚变的同时,实现足够的离子体密度(n)、温度(T)和能量约束时间(τ)的高聚变三重积(nτT)。

离子体需要足够的品质因素(G∝ατT)才能实现高聚变性,并且随着离子体约束质量 (H89:归一化能量约束时间) 的增加而增加。

为了使托卡马克设计成为聚变反应堆的可行选择,必须开发可靠的方法来定期抑制边缘爆发(edge burst)事件而不影响 G。

科学家已经通过各种方法来减轻边缘爆发事件。一种有效的方法是利用外部 3D 场线圈的共振磁扰动 (RMP),这已被证明是最有前途的边缘爆发抑制方法之一。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:托卡马克中的 3D 场线圈结构。(来源:论文)

然而,这种情况的代价高昂,导致 H89 和 G 与标准高约束等离子体体系相比显著恶化,从而削弱了经济前景。此外,3D 场还增加了灾难性核心不稳定的风险,称为中断,这甚至比边缘爆裂更严重。因此,无边缘爆发操作与高约束操作的安全可及性和兼容性亟待探索。

首次在两个托卡马克上实现

该研究首次在 KSTAR 和 DIII-D 两个托卡马克上进行了创新和集成的 3D 场优化,通过结合机器学习 (ML)、自适应和多机器功能,来自动访问和实现几乎几乎完全无边缘爆发状态,同时从最初的爆发抑制状态提高等离子体聚变性能,这是未来反应堆实现无边缘爆发运行的一个重要里程碑。

这是通过实时利用无边缘爆发起始和损耗之间的滞后来增强等离子体约束,同时扩展 ML 在捕获物理和优化核聚变技术方面的能力来实现的。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:DIII-D 和 KSTAR 托卡马克中 ELM-free 放电的性能比较。(来源:论文)

这种集成有助于:

  • 高度增强等离子体约束,在两台机器的无边界局域模(Edge Localized Mode-free,ELM-free)场景中达到最高融合 G,G 增加高达 90%;

  • 使用基于 ML 的 3D 场模拟器首次实现全自动 3D 场优化;

  • 从等离子体操作一开始就同时建立爆发抑制,实现接近 ITER 相关水平的几乎完全的无边缘爆发操作。这一成就为国际热核聚变实验反应堆(ITER)等未来设备迈出了至关重要的一步,在这些设备中,依赖经验 RMP 优化不再是可行或可接受的方法。

「等离子体中存在不稳定性,可能会导致聚变装置严重损坏。我们不能在商业聚变容器中使用这些物质。我们的工作推动了该领域的发展,并表明人工智能可以在管理聚变反应方面发挥重要作用,避免不稳定,同时允许等离子体产生尽可能多的聚变能。」通讯作者、PPPL 机械和航空航天工程系副教授 Egemen Kolemen 说道。

基于 ML 的全自动 3D 场优化

在本实验中,使用一系列放电来寻找安全 ELM 抑制的优化 3D 波形。

在此背景下,研究引入了 ML 技术来开发自动化 3D 线圈优化的新颖路径,并首次演示了该概念。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:基于机器学习的实时 RMP 优化算法。(来源:论文)

研究人员开发了 GPEC 代码的代理模型 (ML-3D),以实时利用基于物理的模型。该模型使用 ML 算法将计算时间加速到 ms 级,并集成到 KSTAR 中的自适应 RMP 优化器中。

ML-3D 由一个完全连接的多层感知器(MLP)组成,由九个输入驱动。为了训练该模型,利用 8490 KSTAR 平衡的 GPEC 模拟。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:ML-3D 模型性能。(来源:论文)

该算法利用 ELM 状态监视器(Dα)信号实时调整 IRMP,可以保持足够的边缘 3D 场来访问和维持 ELM 抑制。同时,3D 场优化器使用 ML-3D 的输出来调整 3D 线圈上的电流分布,从而保证安全的 3D 场以避免中断。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:具有集成 RMP 优化功能的全自动 ELM 抑制放电 (#31873) 的等离子体参数。(来源:论文)

KSTAR 实验中,ML 集成的自适应 RMP 优化器在 4.5 秒内触发,在 6.2 秒内实现安全的 ELM 抑制。

研究还表明 3D-ML 作为自动化无 ELM 访问的可行解决方案。ML-3D 基于物理模型,不需要实验数据,使其可以直接扩展到 ITER 和未来的聚变反应堆。这种对未来设备的强大适用性凸显了 ML 集成 3D 场优化方案的优势。此外,在未来的 3D 线圈电流限制更高的设备中,有望实现更好的场优化和更高的聚变性能。

研究成功优化了 KSTAR 和 DIII-D 装置中的受控 ELM-free 状态,并具有高度增强的聚变性能,涵盖了与未来反应堆相关的 low-n RMP 到 ITER 相关的 nRMP = 3 RMP,并在两台机器中实现了各种 ELM-free 场景中的最高水平。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:性能高度增强的优化 RMP 振幅 (#190738) 的等离子体参数。(来源:论文)

此外,ML 算法与 RMP 控制的创新集成首次实现了全自动 3D 场优化和 ELM-free 操作,并在自适应优化流程的支持下,性能得到了显著增强。这种自适应方法展现了 RMP ELM 抑制和高限制之间的兼容性。

此外,它还提供了一种稳健的策略,通过最大限度地减少限制和无感电流分数的损失,在长脉冲场景(持续超过 45 秒)中实现稳定的 ELM 抑制。

值得注意的是,在 nRMP = 3 RMP 的 DIII-D 中观察到显著的性能 (G) 提升,显示较初始标准 ELM 抑制状态提高了 90% 以上。这种增强不仅归因于自适应 RMP 控制,还归因于等离子体旋转的自洽演化。该响应能够以非常低的 RMP 幅度进行 ELM 抑制,从而增强基座。此功能是系统通过对自适应调制的自组织响应过渡到最佳状态的一个很好的例子。

可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊

图示:通过自适应 RMP 优化提高放电性能。(来源:论文)

此外,自适应方案与早期的 RMP-ramp 方法相结合,实现了 ITER 相关的 ELM-free 场景,几乎完全 ELM-free 操作。这些结果证实,集成自适应 RMP 控制是一种非常有前途的优化 ELM 抑制状态的方法,有可能解决实现实用且经济可行的聚变能源的最艰巨的挑战之一。

参考内容:https://phys.org/news/2024-05-ai-intensive-aspects-plasma-physics.html

【推荐阅读】

以上是可控核聚变新里程碑,AI首次实现双托卡马克3D场全自动优化,登Nature子刊的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新的最佳及时工程技术的年度汇编最新的最佳及时工程技术的年度汇编Apr 10, 2025 am 11:22 AM

对于那些可能是我专栏新手的人,我广泛探讨了AI的最新进展,包括体现AI,AI推理,AI中的高科技突破,及时的工程,AI培训,AI,AI RE RE等主题

欧洲的AI大陆行动计划:Gigafactories,Data Labs和Green AI欧洲的AI大陆行动计划:Gigafactories,Data Labs和Green AIApr 10, 2025 am 11:21 AM

欧洲雄心勃勃的AI大陆行动计划旨在将欧盟确立为人工智能的全球领导者。 一个关键要素是建立了AI Gigafactories网络,每个网络都有大约100,000个高级AI芯片 - 2倍的自动化合物的四倍

微软的直接代理商故事是否足以创造更多的粉丝?微软的直接代理商故事是否足以创造更多的粉丝?Apr 10, 2025 am 11:20 AM

微软对AI代理申请的统一方法:企业的明显胜利 微软最近公告的新AI代理能力清晰而统一的演讲给人留下了深刻的印象。 与许多技术公告陷入困境不同

向员工出售AI策略:Shopify首席执行官的宣言向员工出售AI策略:Shopify首席执行官的宣言Apr 10, 2025 am 11:19 AM

Shopify首席执行官TobiLütke最近的备忘录大胆地宣布AI对每位员工的基本期望是公司内部的重大文化转变。 这不是短暂的趋势。这是整合到P中的新操作范式

IBM启动具有完整AI集成的Z17大型机IBM启动具有完整AI集成的Z17大型机Apr 10, 2025 am 11:18 AM

IBM的Z17大型机:集成AI用于增强业务运营 上个月,在IBM的纽约总部,我收到了Z17功能的预览。 以Z16的成功为基础(于2022年推出并证明持续的收入增长

5 Chatgpt提示取决于别人并完全相信自己5 Chatgpt提示取决于别人并完全相信自己Apr 10, 2025 am 11:17 AM

解锁不可动摇的信心,消除了对外部验证的需求! 这五个CHATGPT提示将指导您完全自力更生和自我感知的变革转变。 只需复制,粘贴和自定义包围

AI与您的思想危险相似AI与您的思想危险相似Apr 10, 2025 am 11:16 AM

人工智能安全与研究公司 Anthropic 最近的一项[研究]开始揭示这些复杂过程的真相,展现出一种令人不安地与我们自身认知领域相似的复杂性。自然智能和人工智能可能比我们想象的更相似。 窥探内部:Anthropic 可解释性研究 Anthropic 进行的研究的新发现代表了机制可解释性领域的重大进展,该领域旨在反向工程 AI 的内部计算——不仅仅观察 AI 做了什么,而是理解它在人工神经元层面如何做到这一点。 想象一下,试图通过绘制当有人看到特定物体或思考特定想法时哪些神经元会放电来理解大脑。A

龙翼展示高通的边缘动力龙翼展示高通的边缘动力Apr 10, 2025 am 11:14 AM

高通的龙翼:企业和基础设施的战略飞跃 高通公司通过其新的Dragonwing品牌在全球范围内积极扩展其范围,以全球为目标。 这不仅仅是雷布兰

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境