搜尋
首頁科技週邊人工智慧DeepMind新研究:transformer可以自我改進,無需人為幹預

目前,Transformers 已经成为序列建模的强大神经网络架构。预训练 transformer 的一个显著特性是它们有能力通过提示 conditioning 或上下文学习来适应下游任务。经过大型离线数据集上的预训练之后,大规模 transformers 已被证明可以高效地泛化到文本补全、语言理解和图像生成方面的下游任务。

最近的工作表明,transformers 还可以通过将离线强化学习(RL)视作顺序预测问题,进而从离线数据中学习策略。Chen et al. (2021)的工作表明,transformers 可以通过模仿学习从离线 RL 数据中学习单任务策略,随后的工作表明 transformers 可以在同领域和跨领域设置中提取多任务策略。这些工作都展示了提取通用多任务策略的范式,即首先收集大规模和多样化的环境交互数据集,然后通过顺序建模从数据中提取策略。这类通过模仿学习从离线 RL 数据中学习策略的方法被称为离线策略蒸馏(Offline Policy Distillation)或策略蒸馏(Policy Distillation, PD)。

PD 具有简单性和可扩展性,但它的一大缺点是生成的策略不会在与环境的额外交互中逐步改进。举例而言,谷歌的通才智能体 Multi-Game Decision Transformers 学习了一个可以玩很多 Atari 游戏的返回条件式(return-conditioned)策略,而 DeepMind 的通才智能体 Gato 通过上下文任务推理来学习一个解决多样化环境中任务的策略。遗憾的是,这两个智能体都不能通过试错来提升上下文中的策略。因此 PD 方法学习的是策略而不是强化学习算法。

在近日 DeepMind 的一篇论文中,研究者假设 PD 没能通过试错得到改进的原因是它训练用的数据无法显示学习进度。当前方法要么从不含学习的数据中学习策略(例如通过蒸馏固定专家策略),要么从包含学习的数据中学习策略(例如 RL 智能体的重放缓冲区),但后者的上下文大小(太小)无法捕获策略改进。

DeepMind新研究:transformer可以自我改進,無需人為幹預

论文地址:https://arxiv.org/pdf/2210.14215.pdf

研究者的主要观察结果是,RL 算法训练中学习的顺序性在原则上可以将强化学习本身建模为一个因果序列预测问题。具体地,如果一个 transformer 的上下文足够长,包含了由学习更新带来的策略改进,那么它不仅应该可以表示一个固定策略,而且能够通过关注之前 episodes 的状态、动作和奖励来表示一个策略改进算子。这样开启了一种可能性,即任何 RL 算法都可以通过模仿学习蒸馏成足够强大的序列模型如 transformer,并将这些模型转换为上下文 RL 算法。

研究者提出了算法蒸馏(Algorithm Distillation, AD),这是一种通过优化 RL 算法学习历史中因果序列预测损失来学习上下文策略改进算子的方法。如下图 1 所示,AD 由两部分组成。首先通过保存 RL 算法在大量单独任务上的训练历史来生成大型多任务数据集,然后 transformer 模型通过将前面的学习历史用作其上下文来对动作进行因果建模。由于策略在源 RL 算法的训练过程中持续改进,因此 AD 不得不学习改进算子以便准确地建模训练历史中任何给定点的动作。至关重要的一点是,transformer 上下文必须足够大(即 across-episodic)才能捕获训练数据的改进。

DeepMind新研究:transformer可以自我改進,無需人為幹預

研究者表示,通过使用足够大上下文的因果 transformer 来模仿基于梯度的 RL 算法,AD 完全可以在上下文中强化新任务学习。研究者在很多需要探索的部分可观察环境中评估了 AD,包括来自 DMLab 的基于像素的 Watermaze,结果表明 AD 能够进行上下文探索、时序信度分配和泛化。此外,AD 学习到的算法比生成 transformer 训练源数据的算法更加高效。

最後值得關注的是,AD 是第一個透過對具有模仿損失的離線資料進行順序建模以展示上下文強化學習的方法。

DeepMind新研究:transformer可以自我改進,無需人為幹預

方法

#在生命週期內,強化學習智能體需要在執行複雜的動作方面表現良好。對智能體而言,不管它所處的環境、內部結構和執行情況如何,都可以被視為是在過去經驗的基礎上完成的。可用如下形式表示:

DeepMind新研究:transformer可以自我改進,無需人為幹預

研究者同時將「長期歷史條件, long history-conditioned」策略看作演算法,得出:

DeepMind新研究:transformer可以自我改進,無需人為幹預

其中∆(A)表示動作空間A 上的機率分佈空間。公式 (3) 表明,該演算法可以在環境中展開,以產生觀察、獎勵和動作序列。為了簡單起見,研究將演算法以P 表示,將環境(即任務)以DeepMind新研究:transformer可以自我改進,無需人為幹預的學習歷史都是由演算法DeepMind新研究:transformer可以自我改進,無需人為幹預表示,這樣對於任何給定任務DeepMind新研究:transformer可以自我改進,無需人為幹預#產生的。可以得到

DeepMind新研究:transformer可以自我改進,無需人為幹預

研究者用大寫拉丁字母表示隨機變量,例如O、A、R 及其對應的小寫形式o,α,r 。透過將演算法視為長期歷史條件策略,他們假設任何生成學習歷史的演算法都可以透過對動作執行行為克隆來轉換成神經網路。接下來,該研究提出了一種方法,該方法提供了智能體在生命週期內學習具有行為克隆的序列模型,以將長期歷史映射到動作分佈。

實際執行

在實務中,研究將演算法蒸餾過程 ( algorithm distillation ,AD)實作為一個兩步驟過程。首先,透過在許多不同的任務上執行單獨的基於梯度的 RL 演算法來收集學習歷史資料集。接下來,訓練具有多情節上下文的序列模型來預測歷史中的動作。具體演算法如下所示:

DeepMind新研究:transformer可以自我改進,無需人為幹預

實驗

實驗要求所使用的環境都支援許多任務,而這些任務不能從觀察中輕易的進行推斷,並且情節(episodes)足夠短,可以有效地訓練跨情節因果transformers。這項工作的主要目的是調查相對於先前工作,AD 強化在多大程度上是在上下文中學習的。實驗將 AD、 ED( Expert Distillation)  、RL^2 等進行了比較。

評估 AD、ED、 RL^2 結果如圖 3 所示。研究發現 AD 和 RL^2 都可以在上下文中學習從訓練分佈中採樣的任務,而 ED 則不能,儘管 ED 在分佈內評估時確實比隨機猜測做得更好。

DeepMind新研究:transformer可以自我改進,無需人為幹預

#

圍繞下圖 4,研究者回答了一系列問題。 AD 是否表現出情境強化學習?結果顯示 AD 情境強化學習在所有環境中都能學習,相較之下,ED 在大多數情況下都無法在情境中探索和學習。 

AD 能從基於像素的觀測中學習嗎?結果顯示 AD 透過上下文 RL 最大化了情境回歸,而 ED 則無法學習。

AD 是否可以學習比產生來源資料的演算法更有效的 RL 演算法?結果顯示 AD 的資料效率明顯高於來源演算法(A3C 和 DQN)。

DeepMind新研究:transformer可以自我改進,無需人為幹預

是否可以透過示範來加速 AD?為了回答這個問題,該研究保留測試集資料中沿來源演算法歷史的不同點採樣策略,然後,使用此策略資料預先填充AD 和ED 的上下文,並在Dark Room 的環境中運行這兩種方法,將結果繪製在圖5 中。雖然 ED 保持了輸入策略的效能,AD 在上下文中改進每個策略,直到它接近最優。重要的是,輸入策略越優化,AD 改進它的速度就越快,直到達到最優。

DeepMind新研究:transformer可以自我改進,無需人為幹預

更多細節,請參考原文。

以上是DeepMind新研究:transformer可以自我改進,無需人為幹預的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
擁抱面部是否7B型號奧林匹克賽車擊敗克勞德3.7?擁抱面部是否7B型號奧林匹克賽車擊敗克勞德3.7?Apr 23, 2025 am 11:49 AM

擁抱Face的OlympicCoder-7B:強大的開源代碼推理模型 開發以代碼為中心的語言模型的競賽正在加劇,擁抱面孔與強大的競爭者一起參加了比賽:OlympicCoder-7B,一種產品

4個新的雙子座功能您可以錯過4個新的雙子座功能您可以錯過Apr 23, 2025 am 11:48 AM

你們當中有多少人希望AI可以做更多的事情,而不僅僅是回答問題?我知道我有,最近,我對它的變化感到驚訝。 AI聊天機器人不僅要聊天,還關心創建,研究

Camunda為經紀人AI編排編寫了新的分數Camunda為經紀人AI編排編寫了新的分數Apr 23, 2025 am 11:46 AM

隨著智能AI開始融入企業軟件平台和應用程序的各個層面(我們必須強調的是,既有強大的核心工具,也有一些不太可靠的模擬工具),我們需要一套新的基礎設施能力來管理這些智能體。 總部位於德國柏林的流程編排公司Camunda認為,它可以幫助智能AI發揮其應有的作用,並與新的數字工作場所中的準確業務目標和規則保持一致。該公司目前提供智能編排功能,旨在幫助組織建模、部署和管理AI智能體。 從實際的軟件工程角度來看,這意味著什麼? 確定性與非確定性流程的融合 該公司表示,關鍵在於允許用戶(通常是數據科學家、軟件

策劃的企業AI體驗是否有價值?策劃的企業AI體驗是否有價值?Apr 23, 2025 am 11:45 AM

參加Google Cloud Next '25,我渴望看到Google如何區分其AI產品。 有關代理空間(此處討論)和客戶體驗套件(此處討論)的最新公告很有希望,強調了商業價值

如何為抹布找到最佳的多語言嵌入模型?如何為抹布找到最佳的多語言嵌入模型?Apr 23, 2025 am 11:44 AM

為您的檢索增強發電(RAG)系統選擇最佳的多語言嵌入模型 在當今的相互聯繫的世界中,建立有效的多語言AI系統至關重要。 強大的多語言嵌入模型對於RE至關重要

麝香:奧斯汀的機器人需要每10,000英里進行干預麝香:奧斯汀的機器人需要每10,000英里進行干預Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi發射:仔細觀察Musk的主張 埃隆·馬斯克(Elon Musk)最近宣布,特斯拉即將在德克薩斯州奧斯汀推出的Robotaxi發射,最初出於安全原因部署了一支小型10-20輛汽車,並有快速擴張的計劃。 h

AI震驚的樞軸:從工作工具到數字治療師和生活教練AI震驚的樞軸:從工作工具到數字治療師和生活教練Apr 23, 2025 am 11:41 AM

人工智能的應用方式可能出乎意料。最初,我們很多人可能認為它主要用於代勞創意和技術任務,例如編寫代碼和創作內容。 然而,哈佛商業評論最近報導的一項調查表明情況並非如此。大多數用戶尋求人工智能的並非是代勞工作,而是支持、組織,甚至是友誼! 報告稱,人工智能應用案例的首位是治療和陪伴。這表明其全天候可用性以及提供匿名、誠實建議和反饋的能力非常有價值。 另一方面,營銷任務(例如撰寫博客、創建社交媒體帖子或廣告文案)在流行用途列表中的排名要低得多。 這是為什麼呢?讓我們看看研究結果及其對我們人類如何繼續將

公司競爭AI代理的採用公司競爭AI代理的採用Apr 23, 2025 am 11:40 AM

AI代理商的興起正在改變業務格局。 與雲革命相比,預計AI代理的影響呈指數增長,有望徹底改變知識工作。 模擬人類決策的能力

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)