搜尋
首頁科技週邊人工智慧用AI攻擊AI?對抗性機器學習的威脅與防禦

越來越多的企業組織開始應用人工智慧(Artificial Intelligence,縮寫AI)和機器學習(Machine Learning,縮寫ML)項目,保護這些項目變得日益重要。 IBM和Morning Consult共同進行的一項調查顯示,在7,500多家受訪跨國企業中,35%的企業已經在使用AI,比去年增加了13%,另有42%的企業在研究可行性。然而近20%的公司表示在保護AI系統的資料方面有困難,這減慢了採用AI的步伐。

保護AI和ML系統面臨重大挑戰,有些挑戰並不是AI技術本身造成的。比方說,AI和ML系統需要數據,如果數據包含敏感或隱私訊息,就會成為攻擊者的目標。機器學習模型在網路空間環境下存在受到對抗性攻擊的潛在風險, 可能成為防禦體系中最為薄弱的環節, 從而危害整個系統的安全。

什麼是對抗性機器學習

對抗性機器學習不是一種機器學習,而是攻擊者用來攻擊ML系統的一系列手段。對抗性機器學習利用了ML模型的漏洞和特殊性來實施攻擊。例如,對抗性機器學習可用於使ML交易演算法做出錯誤的交易決策,使欺詐性操作更難被發現,並提供錯誤的操作建議,以及操縱基於情緒分析的報告。

對抗性機器學習攻擊分為中毒攻擊、逃避攻擊、提取攻擊和推理攻擊等四種方式。

1.中毒攻擊

在中毒攻擊中,攻擊者操縱訓練資料集。例如,故意讓資料集有偏差,讓機器以錯誤的方式學習。例如,你家裝有基於AI的安全攝影機。攻擊者可能每天凌晨3點經過你家,讓他的狗穿過草坪,從而觸發安全系統。最終,你關閉凌晨3點觸發的這些警報,以免被狗狗吵醒。那個遛狗的人實際上在提供訓練數據,讓安全系統知道每天凌晨3點發生的事是無害的。當系統被訓練忽略凌晨3點發生的任何事情後,攻擊者就趁機發動攻擊。

2. 逃避攻擊

在逃避攻擊中,模型已經過訓練,但攻擊者可以稍微改變輸入以實施攻擊。一個例子是停車標誌——當攻擊者貼上讓車標籤後,機器解釋為讓車標誌,而不是停車標誌。在上面遛狗範例中,竊賊可以穿上狗服闖入你家。逃避攻擊就像是機器的視錯覺。

3. 提取攻擊

在提取攻擊中,攻擊者獲得AI系統的副本。有時只需觀察模型的輸入和輸出,就可以提取模型,並試探模型,觀察其反應。如果可以多次試探模型,就能教導自己的模型有同樣的行為方式。

例如在2019年,Proofpoint的電子郵件保護系統曝出漏洞,產生的郵件標頭附有一個分數,顯示了郵件是垃圾郵件的可能性有多大。攻擊者使用這些分數,就可以建立模仿的垃圾郵件偵測引擎,以產生逃避偵測的垃圾郵件。

如果一家公司使用商業AI產品,攻擊者也可以透過購買或使用服務,獲得模型的副本。例如,攻擊者可以使用一些平台,針對防毒引擎測試其惡意軟體。在上面遛狗的例子中,攻擊者可以弄一副望遠鏡觀察安全攝影機是什麼品牌,然後買同一品牌的攝像頭,弄清楚如何繞過防禦。

4. 推理攻擊

在推理攻擊中,攻擊者搞清楚用於訓練系統的資料集,然後利用資料中的漏洞或偏差實施攻擊。如果能搞清楚訓練數據,就可以使用常識或高明的手法來利用它。仍以遛狗的例子為例,攻擊者可能會監視房子,以便摸清楚附近路人車輛狀況。當攻擊者註意到每天凌晨3點有遛狗者經過,安全系統會忽略遛狗者,就有可能利用這個漏洞實施攻擊。

將來,攻擊者也可能同樣利用智慧化的機器學習技術來攻擊正規的機器學習應用。例如,一種新型AI生成式對抗系統。這種系統常用於創建深度偽造(deep fake)內容,即高度逼真的照片或視頻,讓人誤以為真。攻擊者常常將它們用於網路詐騙,但也可以運用同樣的原理來產生無法偵測出來的惡意軟體。

在生成式對抗網路中,一方稱為判別器,另一方稱為生成器,它們互相攻擊。例如,防毒AI可能嘗試找出某個物件是不是惡意軟體。產生惡意軟體的AI可能會嘗試創建第一個系統無法揪出來的惡意軟體。透過兩個系統的反覆對抗,最終結果可能是產生幾乎不可能被發現的惡意軟體。

如何防禦對抗性愛機器學習

網路空間中廣泛存在的對抗使得機器學習的應用面臨嚴峻挑戰,為了防禦對抗性機器學習攻擊的威脅,安全研究人員已經開始了對抗性機器學習的安全研究,提高機器學習演算法在實際應用中的穩健性,保障機器學習相關演算法的應用安全。

研究機構Gartner建議,如果企業有AI和ML系統需要保護,應採取針對性的安全措施。首先,為了保護AI模型的完整性,企業應採用可信賴AI的原則,並對模型進行驗證檢查;其次,為了保護AI訓練資料的完整性,應使用資料中毒檢測技術;此外,許多傳統安全措施也可以被應用到AI系統保護。例如,保護資料不被存取或破壞的解決方還可以保護訓練資料集不被竄改。

MITRE公司以標準化的ATT&CK對抗性策略和技術框架而聞名,它也為AI系統創建了一套名為對抗性機器學習威脅矩陣(Adversarial Machine Learning Threat Matrix )的攻擊框架,該框架後目前被稱為人工智慧系統的對抗性威脅環境(Adversarial Threat Landscape for Artificial-Intelligence Systems,縮寫ATLAS),涵蓋攻擊ML系統的12個階段。

此外,一些廠商已開始發布安全工具,幫助使用者保護AI系統並防禦對抗性機器學習。微軟在2021年5月發表了Counterfit,這款開源自動化工具用於對AI系統進行安全測試。 Counterfit起初是專門針對單一AI模型編寫的攻擊腳本庫,後來變成了一款通用自動化工具,用於大規模攻擊多個AI系統。此工具可用於使MITRE的ATLAS攻擊框架中的技術自動化,但也可用於AI開發階段,提早發現漏洞,以免漏洞進入生產環境。

IBM也有一款名為Adversarial Robustness Toolbox的開源對抗性機器學習防禦工具,它現在是Linux基金會旗下的一個專案。該計畫支援所有流行的ML框架,包括39個攻擊模組,分為逃避、中毒、提取和推理四大類。

針對機器學習在網路空間防禦中可能遭受的攻擊,企業也應該儘早引入機器學習攻擊者模型,目的是科學評估其在特定威脅場景下的安全屬性。同時組織應充分了解對抗性機器學習演算法如何在測試階段發動規避攻擊、在訓練階段發動投毒攻擊、在機器學習全階段發動隱私竊取的常見方法,設計並部署在網路空間實際對抗環境中,能夠有效強化機器學習模型安全性的防禦方法。

參考連結:

https://www.csoonline.com/article/3664748/adversarial-machine-learning-explained-how-attackers-disrupt-ai -and-ml-systems.html

以上是用AI攻擊AI?對抗性機器學習的威脅與防禦的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:51CTO.COM。如有侵權,請聯絡admin@php.cn刪除
擁抱面部是否7B型號奧林匹克賽車擊敗克勞德3.7?擁抱面部是否7B型號奧林匹克賽車擊敗克勞德3.7?Apr 23, 2025 am 11:49 AM

擁抱Face的OlympicCoder-7B:強大的開源代碼推理模型 開發以代碼為中心的語言模型的競賽正在加劇,擁抱面孔與強大的競爭者一起參加了比賽:OlympicCoder-7B,一種產品

4個新的雙子座功能您可以錯過4個新的雙子座功能您可以錯過Apr 23, 2025 am 11:48 AM

你們當中有多少人希望AI可以做更多的事情,而不僅僅是回答問題?我知道我有,最近,我對它的變化感到驚訝。 AI聊天機器人不僅要聊天,還關心創建,研究

Camunda為經紀人AI編排編寫了新的分數Camunda為經紀人AI編排編寫了新的分數Apr 23, 2025 am 11:46 AM

隨著智能AI開始融入企業軟件平台和應用程序的各個層面(我們必須強調的是,既有強大的核心工具,也有一些不太可靠的模擬工具),我們需要一套新的基礎設施能力來管理這些智能體。 總部位於德國柏林的流程編排公司Camunda認為,它可以幫助智能AI發揮其應有的作用,並與新的數字工作場所中的準確業務目標和規則保持一致。該公司目前提供智能編排功能,旨在幫助組織建模、部署和管理AI智能體。 從實際的軟件工程角度來看,這意味著什麼? 確定性與非確定性流程的融合 該公司表示,關鍵在於允許用戶(通常是數據科學家、軟件

策劃的企業AI體驗是否有價值?策劃的企業AI體驗是否有價值?Apr 23, 2025 am 11:45 AM

參加Google Cloud Next '25,我渴望看到Google如何區分其AI產品。 有關代理空間(此處討論)和客戶體驗套件(此處討論)的最新公告很有希望,強調了商業價值

如何為抹布找到最佳的多語言嵌入模型?如何為抹布找到最佳的多語言嵌入模型?Apr 23, 2025 am 11:44 AM

為您的檢索增強發電(RAG)系統選擇最佳的多語言嵌入模型 在當今的相互聯繫的世界中,建立有效的多語言AI系統至關重要。 強大的多語言嵌入模型對於RE至關重要

麝香:奧斯汀的機器人需要每10,000英里進行干預麝香:奧斯汀的機器人需要每10,000英里進行干預Apr 23, 2025 am 11:42 AM

特斯拉的Austin Robotaxi發射:仔細觀察Musk的主張 埃隆·馬斯克(Elon Musk)最近宣布,特斯拉即將在德克薩斯州奧斯汀推出的Robotaxi發射,最初出於安全原因部署了一支小型10-20輛汽車,並有快速擴張的計劃。 h

AI震驚的樞軸:從工作工具到數字治療師和生活教練AI震驚的樞軸:從工作工具到數字治療師和生活教練Apr 23, 2025 am 11:41 AM

人工智能的應用方式可能出乎意料。最初,我們很多人可能認為它主要用於代勞創意和技術任務,例如編寫代碼和創作內容。 然而,哈佛商業評論最近報導的一項調查表明情況並非如此。大多數用戶尋求人工智能的並非是代勞工作,而是支持、組織,甚至是友誼! 報告稱,人工智能應用案例的首位是治療和陪伴。這表明其全天候可用性以及提供匿名、誠實建議和反饋的能力非常有價值。 另一方面,營銷任務(例如撰寫博客、創建社交媒體帖子或廣告文案)在流行用途列表中的排名要低得多。 這是為什麼呢?讓我們看看研究結果及其對我們人類如何繼續將

公司競爭AI代理的採用公司競爭AI代理的採用Apr 23, 2025 am 11:40 AM

AI代理商的興起正在改變業務格局。 與雲革命相比,預計AI代理的影響呈指數增長,有望徹底改變知識工作。 模擬人類決策的能力

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境