


STRAIGHT_JOIN lwn. INNER JOIN: Bilakah Saya Perlu Menggunakan STRAIGHT_JOIN?
STRAIGHT_JOIN lwn. INNER JOIN: Bila Memilih
Menghadapi isu prestasi dengan pertanyaan yang rumit, pembangun mungkin terjumpa kata kunci gabungan STRAIGHT_JOIN sebagai penyelesaian yang berpotensi. Artikel ini menyelidiki selok-belok STRAIGHT_JOIN dan apabila sesuai untuk menggunakannya berbanding INNER JOIN tradisional.
STRAIGHT_JOIN
Kata kunci STRAIGHT_JOIN memaksa MySQL untuk melaksanakan jadual dalam susunan tepat yang dinyatakan dalam pertanyaan. Tingkah laku ini memintas pelan pertanyaan pengoptimum dan boleh menghasilkan peningkatan kelajuan yang ketara dalam senario tertentu. Walau bagaimanapun, ia harus digunakan dengan berhati-hati untuk mengelakkan akibat yang tidak diingini.
Bila Menggunakan STRAIGHT_JOIN
STRAIGHT_JOIN biasanya berguna dalam situasi berikut:
- Apabila pengoptimum memilih pelan pertanyaan sub-optimum untuk sesuatu tertentu pertanyaan.
- Untuk mengatasi pemilihan indeks pengoptimum, memastikan indeks tertentu digunakan.
Bila Perlu Mengelakkan STRAIGHT_JOIN
Sementara STRAIGHT_JOIN boleh bermanfaat, ia tidak disyorkan untuk kegunaan umum. Berikut ialah beberapa sebab mengapa:
- Fleksibiliti yang dikurangkan: STRAIGHT_JOIN membetulkan susunan jadual dan pemilihan indeks, menjadikan pertanyaan kurang boleh disesuaikan dengan perubahan dalam pengedaran data atau pemilihan indeks.
- Potensi penurunan prestasi: Dalam kebanyakan kes, pengoptimum memilih yang terbaik pelan pertanyaan. STRAIGHT_JOIN boleh mengganggu pengoptimuman ini, membawa kepada pelaksanaan yang lebih perlahan.
- Ketegaran pertanyaan: STRAIGHT_JOIN boleh menyukarkan untuk mengekalkan dan mengemas kini pertanyaan, kerana ia bergantung pada susunan jadual dan indeks tertentu penggunaan.
Kesimpulan
STRAIGHT_JOIN ialah pedang yang kuat tetapi bermata dua. Ia boleh memberikan faedah prestasi yang ketara dalam situasi tertentu, tetapi penggunaannya harus dihadkan kepada kes yang ditakrifkan dengan baik di mana rancangan pengoptimum adalah suboptimum. Sebagai peraturan, anda disyorkan untuk menggunakan STRAIGHT_JOIN dengan berhati-hati, membolehkan pengoptimum membuat keputusan terbaik untuk kebanyakan pertanyaan.
Atas ialah kandungan terperinci STRAIGHT_JOIN lwn. INNER JOIN: Bilakah Saya Perlu Menggunakan STRAIGHT_JOIN?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

InnoDB menggunakan redolog dan undologs untuk memastikan konsistensi dan kebolehpercayaan data. 1. Pengubahsuaian halaman data rekod untuk memastikan pemulihan kemalangan dan kegigihan transaksi. 2.UNDOLOGS merekodkan nilai data asal dan menyokong penggantian transaksi dan MVCC.

Metrik utama untuk menjelaskan arahan termasuk jenis, kunci, baris, dan tambahan. 1) Jenis mencerminkan jenis akses pertanyaan. Semakin tinggi nilai, semakin tinggi kecekapan, seperti const adalah lebih baik daripada semua. 2) Kunci memaparkan indeks yang digunakan, dan null menunjukkan tiada indeks. 3) Baris menganggarkan bilangan baris yang diimbas, yang mempengaruhi prestasi pertanyaan. 4) Tambahan memberikan maklumat tambahan, seperti menggunakanFilesort meminta bahawa ia perlu dioptimumkan.

MenggunakanTemary menunjukkan bahawa keperluan untuk membuat jadual sementara dalam pertanyaan MySQL, yang biasanya dijumpai di Orderby menggunakan lajur yang berbeza, GroupBy, atau tidak diindeks. Anda boleh mengelakkan berlakunya indeks dan menulis semula pertanyaan dan meningkatkan prestasi pertanyaan. Khususnya, apabila menggunakan pembelian muncul dalam menjelaskan output, ini bermakna MySQL perlu membuat jadual sementara untuk mengendalikan pertanyaan. Ini biasanya berlaku apabila: 1) deduplikasi atau pengelompokan apabila menggunakan yang berbeza atau kumpulan; 2) Susun apabila Orderby mengandungi lajur bukan indeks; 3) Gunakan subquery kompleks atau menyertai operasi. Kaedah Pengoptimuman termasuk: 1) Orderby dan GroupB

MySQL/InnoDB menyokong empat tahap pengasingan transaksi: ReadUncommitted, ReadCommitted, RepeatableRead dan Serializable. 1. ReadoMuncommitted membolehkan membaca data yang tidak komited, yang boleh menyebabkan bacaan kotor. 2. 3.RepeatableRead adalah tahap lalai, mengelakkan bacaan kotor dan bacaan yang tidak boleh diulang, tetapi bacaan hantu mungkin berlaku. 4. Serializable mengelakkan semua masalah konkurensi tetapi mengurangkan kesesuaian. Memilih tahap pengasingan yang sesuai memerlukan keseimbangan data konsistensi dan keperluan prestasi.

MySQL sesuai untuk aplikasi web dan sistem pengurusan kandungan dan popular untuk sumber terbuka, prestasi tinggi dan kemudahan penggunaan. 1) Berbanding dengan PostgreSQL, MySQL melakukan lebih baik dalam pertanyaan mudah dan operasi membaca serentak yang tinggi. 2) Berbanding dengan Oracle, MySQL lebih popular di kalangan perusahaan kecil dan sederhana kerana sumber terbuka dan kos rendah. 3) Berbanding dengan Microsoft SQL Server, MySQL lebih sesuai untuk aplikasi silang platform. 4) Tidak seperti MongoDB, MySQL lebih sesuai untuk data berstruktur dan pemprosesan transaksi.

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver CS6
Alat pembangunan web visual

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini