cari
Rumahpangkalan datatutorial mysqlMSSQL 首字母替换成大写字母

MSSQL將首字母替換成大寫的实现语句,需要的朋友可以参考下。

--使用程序块

-->Title:生成測試數據
-->Author:wufeng4552
-->Date :2009-09-21 13:40:59
declare @s varchar(8000)
set @s=lower(@@version)
select @s
/*
microsoft sql server 2005 - 9.00.4035.00 (intel x86)
nov 24 2008 13:01:59
copyright (c) 1988-2005 microsoft corporation
enterprise edition on windows nt 5.2 (build 3790: service pack 2)


(1 個資料列受到影響)
*/
declare @i int,@j int
select @i=1,@j=len(@j)
while charindex(' ',' '+@s,@i)>0
begin
set @I=charindex(' ',' '+@s,@i)+1
if @i>@j continue
set @s=stuff(@s,@i-1,1,upper(substring(@s,@i-1,1)))
end
select @s
/*
Microsoft Sql Server 2005 - 9.00.4035.00 (intel X86)
nov 24 2008 13:01:59
copyright (c) 1988-2005 Microsoft Corporation
enterprise Edition On Windows Nt 5.2 (build 3790: Service Pack 2)


(1 個資料列受到影響)
*/

----使用函数

-->Title:生成測試數據
-->Author:wufeng4552
-->Date :2009-09-21 13:40:59
if object_id('F_split')is not null drop function dbo.F_split
go
create function F_split(@s nvarchar(1000))
returns nvarchar(1000)
as
begin
declare @str nvarchar(1000),@split nvarchar(100)
select @s=@s+' ',@str=''
while charindex(' ',@s)>0
begin
set @split=left(@s,charindex(' ',@s))
set @str=@str+upper(left(@split,1))+right(@split,len(@split))
set @s=stuff(@s,1,charindex(char(32),@s),'')
end
return @str
end
go
declare @s varchar(1000)
set @s=lower(@@version)
select dbo.F_split(@s)
/*
Microsoft Sql Server 2005 - 9.00.4035.00 (intel X86)
nov 24 2008 13:01:59
copyright (c) 1988-2005 Microsoft Corporation
enterprise Edition On Windows Nt 5.2 (build 3790: Service Pack 2)
*/

--3借住系統表,或臨時表

-->Title:生成測試數據
-->Author:wufeng4552
-->Date :2009-09-21 13:40:59
declare @str varchar(1000)
select @str=char(32)+lower(@@version)
select @str=replace(@str,char(32)+char(number),char(32)+char(number))
from master..spt_values
where type='p' and number between 65 and 90
select stuff(@str,1,1,'')
/*
Microsoft Sql Server 2005 - 9.00.4035.00 (intel X86)
nov 24 2008 13:01:59
copyright (c) 1988-2005 Microsoft Corporation
enterprise Edition On Windows Nt 5.2 (build 3790: Service Pack 2)


(1 個資料列受到影響)

*/
Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Terangkan peranan log redo innoDB dan membatalkan log.Terangkan peranan log redo innoDB dan membatalkan log.Apr 15, 2025 am 12:16 AM

InnoDB menggunakan redolog dan undologs untuk memastikan konsistensi dan kebolehpercayaan data. 1. Pengubahsuaian halaman data rekod untuk memastikan pemulihan kemalangan dan kegigihan transaksi. 2.UNDOLOGS merekodkan nilai data asal dan menyokong penggantian transaksi dan MVCC.

Apakah metrik utama untuk dicari dalam output yang dijelaskan (jenis, kunci, baris, tambahan)?Apakah metrik utama untuk dicari dalam output yang dijelaskan (jenis, kunci, baris, tambahan)?Apr 15, 2025 am 12:15 AM

Metrik utama untuk menjelaskan arahan termasuk jenis, kunci, baris, dan tambahan. 1) Jenis mencerminkan jenis akses pertanyaan. Semakin tinggi nilai, semakin tinggi kecekapan, seperti const adalah lebih baik daripada semua. 2) Kunci memaparkan indeks yang digunakan, dan null menunjukkan tiada indeks. 3) Baris menganggarkan bilangan baris yang diimbas, yang mempengaruhi prestasi pertanyaan. 4) Tambahan memberikan maklumat tambahan, seperti menggunakanFilesort meminta bahawa ia perlu dioptimumkan.

Apakah status sementara dalam menjelaskan dan bagaimana untuk mengelakkannya?Apakah status sementara dalam menjelaskan dan bagaimana untuk mengelakkannya?Apr 15, 2025 am 12:14 AM

MenggunakanTemary menunjukkan bahawa keperluan untuk membuat jadual sementara dalam pertanyaan MySQL, yang biasanya dijumpai di Orderby menggunakan lajur yang berbeza, GroupBy, atau tidak diindeks. Anda boleh mengelakkan berlakunya indeks dan menulis semula pertanyaan dan meningkatkan prestasi pertanyaan. Khususnya, apabila menggunakan pembelian muncul dalam menjelaskan output, ini bermakna MySQL perlu membuat jadual sementara untuk mengendalikan pertanyaan. Ini biasanya berlaku apabila: 1) deduplikasi atau pengelompokan apabila menggunakan yang berbeza atau kumpulan; 2) Susun apabila Orderby mengandungi lajur bukan indeks; 3) Gunakan subquery kompleks atau menyertai operasi. Kaedah Pengoptimuman termasuk: 1) Orderby dan GroupB

Huraikan tahap pengasingan urus niaga SQL yang berbeza (baca yang tidak komited, baca bacaan yang komited, berulang, bersiri) dan implikasinya dalam MySQL/InnoDB.Huraikan tahap pengasingan urus niaga SQL yang berbeza (baca yang tidak komited, baca bacaan yang komited, berulang, bersiri) dan implikasinya dalam MySQL/InnoDB.Apr 15, 2025 am 12:11 AM

MySQL/InnoDB menyokong empat tahap pengasingan transaksi: ReadUncommitted, ReadCommitted, RepeatableRead dan Serializable. 1. ReadoMuncommitted membolehkan membaca data yang tidak komited, yang boleh menyebabkan bacaan kotor. 2. 3.RepeatableRead adalah tahap lalai, mengelakkan bacaan kotor dan bacaan yang tidak boleh diulang, tetapi bacaan hantu mungkin berlaku. 4. Serializable mengelakkan semua masalah konkurensi tetapi mengurangkan kesesuaian. Memilih tahap pengasingan yang sesuai memerlukan keseimbangan data konsistensi dan keperluan prestasi.

MySQL vs Pangkalan Data Lain: Membandingkan PilihanMySQL vs Pangkalan Data Lain: Membandingkan PilihanApr 15, 2025 am 12:08 AM

MySQL sesuai untuk aplikasi web dan sistem pengurusan kandungan dan popular untuk sumber terbuka, prestasi tinggi dan kemudahan penggunaan. 1) Berbanding dengan PostgreSQL, MySQL melakukan lebih baik dalam pertanyaan mudah dan operasi membaca serentak yang tinggi. 2) Berbanding dengan Oracle, MySQL lebih popular di kalangan perusahaan kecil dan sederhana kerana sumber terbuka dan kos rendah. 3) Berbanding dengan Microsoft SQL Server, MySQL lebih sesuai untuk aplikasi silang platform. 4) Tidak seperti MongoDB, MySQL lebih sesuai untuk data berstruktur dan pemprosesan transaksi.

Bagaimanakah kardinaliti indeks MySQL mempengaruhi prestasi pertanyaan?Bagaimanakah kardinaliti indeks MySQL mempengaruhi prestasi pertanyaan?Apr 14, 2025 am 12:18 AM

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

MySQL: Sumber dan Tutorial untuk Pengguna BaruMySQL: Sumber dan Tutorial untuk Pengguna BaruApr 14, 2025 am 12:16 AM

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Mysql dunia nyata: Contoh dan kes penggunaanMysql dunia nyata: Contoh dan kes penggunaanApr 14, 2025 am 12:15 AM

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini