NAME AVALUE SDESC _inmemory_check_prot_meta FALSE If true, marks SMU area read only to prevent stray writes _inmemory_private_journal_quota 100 quota for transaction in-memory private journals _inmemory_private_journal_sharedpool_quota 20
NAME | AVALUE | SDESC |
_inmemory_check_prot_meta | FALSE | If true, marks SMU area read only to prevent stray writes |
_inmemory_private_journal_quota | 100 | quota for transaction in-memory private journals |
_inmemory_private_journal_sharedpool_quota | 20 | quota for transaction in-memory objects |
_inmemory_private_journal_numbkts | 512 | Number of priv jrnl ht bkts |
_inmemory_private_journal_numgran | 128 | Number of granules per HT node |
_inmemory_jscan | 0 | inmemory jscan enable |
_inmemory_pin_hist_mode | 16 | settings for IM pinned buffer history |
_inmemory_txn_checksum | 0 | checksum for SMUs and private journals |
_inmemory_buffer_waittime | 100 | wait interval for one SMU or IMCU to be freed |
_inmemory_cu_timeout | 100 | maximum wait time for one IMCU to be freed |
_inmemory_cudrop_timeout | 1000 | maximum wait time for IMCU to be freed during drop |
_inmemory_exclto_timeout | 1000 | maximum wait time to pin SMU for cleanout |
_inmemory_num_hash_latches | 256 | Maximum number of latches for IM buffers |
_inmemory_strdlxid_timeout | 0 | max time to determine straddling transactions |
_inmemory_incremental_repopulation | FALSE | If true, incremental repopulation of IMCU will be attempted |
_inmemory_lock_for_smucreate | FALSE | take object lock during smu creation |
_inmemory_auto_distribute | TRUE | If true, enable auto distribute |
_inmemory_autodist_2safe | FALSE | If true, enable auto distribute with 2safe |
_inmemory_distribute_timeout | 300 | If true, enable auto distribute with 2safe |
_inmemory_distribute_ondemand_timeout | 300 | On demand timeout for redistribute |
inmemory_size | 0 | size in bytes of in-memory area |
_inmemory_64k_percent | 30 | percentage of in-memory area for 64k pools |
_inmemory_min_ima_defersize | 0 | Defer in-memory area allocation beyond this size |
_inmemory_memprot | TRUE | enable or disable memory protection for in-memory |
_inmemory_analyzer_optimize_for | 0 | inmemory analyzer optimize for |
_inmemory_default_flags | 8459 | Default flags based on inmemory_clause_default |
_inmemory_default_new | FALSE | Force in-memory on new tables |
inmemory_clause_default | Default in-memory clause for new tables | |
inmemory_force | DEFAULT | Force tables to be in-memory or not |
inmemory_query | ENABLE | Specifies whether in-memory queries are allowed |
_inmemory_query_scan | TRUE | In-memory scan enabled |
_inmemory_scan_override | FALSE | In-memory scan override |
_inmemory_scan_threshold_percent_noscan | 50 | In-memory scan threshold maximum percent dirty no scan |
_inmemory_small_segment_threshold | 65536 | In-memory small segment threshold (must be larger for in-memory) |
_inmemory_query_fetch_by_rowid | FALSE | In-memory fetch-by-rowid enabled |
_inmemory_pruning | ON | In-memory pruning |
_inmemory_enable_sys | FALSE | enable in-memory on system tablespace with sys user |
_inmemory_populate_fg | FALSE | populate in foreground |
_inmemory_pga_per_server | 536870912 | minimum pga needed per inmemory populate server |
inmemory_max_populate_servers | 0 | maximum inmemory populate servers |
_inmemory_servers_throttle_pgalim_percent | 55 | In-memory populate servers throttling pga limit percentage |
inmemory_trickle_repopulate_servers_percent | 1 | inmemory trickle repopulate servers percent |
_inmemory_populate_wait | FALSE | wait for population to complete |
_inmemory_populate_wait_max | 600 | maximum wait time in seconds for segment populate |
_inmemory_imco_cycle | 120 | IMCO cycle in seconds (sleep period) |
_inmemory_enable_population_verify | 1 | verify in-memory population |
_inmemory_log_level | 1 | in-memory log level |
_inmemory_fs_verify | FALSE | in-memory faststart verify |
_inmemory_force_fs | FALSE | in-memory faststart force |
_inmemory_force_fs_tbs | SYSAUX | in-memory faststart force tablespace |
_inmemory_force_fs_tbs_size | 1073741824 | in-memory faststart force tablespace size |
_inmemory_fs_raise_error | FALSE | in-memory faststart raise error |
_inmemory_fs_nodml | FALSE | in-memory faststart assumes no dmls while populating |
_inmemory_fs_enable | FALSE | in-memory faststart enable |
_inmemory_fs_enable_blk_lvl_inv | TRUE | in-memory faststart enable block level invalidation |
_inmemory_fs_blk_inv_blkcnt | in-memory faststart CU invalidation threshold(blocks) | |
_inmemory_fs_blk_inv_blk_percent | 20 | in-memory faststart CU invalidation threshold(blocks) |
_inmemory_enable_stat_alert | FALSE | dump in-memory stats in alert log file |
_inmemory_imcu_align | TRUE | Enforce 8M IMCU alignment |
_inmemory_max_populate_retry | 3 | IM populate maximum number of retry |
_inmemory_imcu_target_rows | 1048576 | IMCU target number of rows |
_inmemory_imcu_target_bytes | 0 | IMCU target size in bytes |
_inmemory_imcu_source_extents | 0 | number of source extents per IMCU |
_inmemory_imcu_source_blocks | 0 | number of source blocks per IMCU |
_inmemory_imcu_source_minbytes | 1048576 | number of minimum source bytes per IMCU |
_inmemory_imcu_populate_minbytes | 5242880 | minimum free space in IMA for populating IMCU |
_inmemory_imcu_source_analyze_bytes | 134217728 | number of source analyze bytes per IMCU |
_inmemory_imcu_target_maxrows | 8388608 | IMCU maximum target number of rows |
_inmemory_imcu_source_maxbytes | 536870912 | IMCU maximum source size in bytes |
_inmemory_max_queued_tasks | 0 | Maximum queued populating tasks on the auxiliary queue |
_inmemory_repopulate_threshold_rows | In-memory repopulate threshold number of modified rows | |
_inmemory_repopulate_threshold_blocks | In-memory repopulate threshold number of modified blocks | |
_inmemory_pct_inv_rows_invalidate_imcu | 50 | In-memory percentage invalid rows for IMCU invalidation |
_inmemory_pct_inv_blocks_invalidate_imcu | 100 | In-memory percentage invalid blocks for IMCU invalidation |
_inmemory_repopulate_threshold_mintime_factor | 5 | In-memory repopulate minimum interval (N*timetorepop) |
_inmemory_repopulate_threshold_mintime | 0 | In-memory repopulate minimum interval (millisec) |
_inmemory_repopulate_threshold_scans | 0 | In-memory repopulate threshold number of scans |
_inmemory_repopulate_priority_scale_factor | 100 | In-memory repopulate priority threshold scale factor |
_inmemory_repopulate_invalidate_rate_percent | 100 | In-memory repopulate invalidate rate percent |
_inmemory_repopulate_priority_threshold_row | 20 | In-memory repopulate priority threshold row |
_inmemory_repopulate_priority_threshold_block | 40 | In-memory repopulate priority threshold block |
_inmemory_repopulate_threshold_rows_percent | 5 | In-memory repopulate threshold rows invalid percentage |
_inmemory_repopulate_threshold_blocks_percent | 10 | In-memory repopulate threshold blocks invalid percentage |
_inmemory_repopulate_disable | FALSE | disable In-memory repopulate |
_inmemory_check_protect | FALSE | If true, marks in-memory area read only to prevent stray writes |
_inmemory_checksum | FALSE | If true, checksums in-memory area to detect stray writes |
_inmemory_validate_fetch | FALSE | If true, validate single-row fetch between in-memory and disk |
_inmemory_journal_row_logging | FALSE | If true, log the entire row into the in-memory journal |
_inmemory_journal_check | 0 | Depending on value does one of the DML verifications |
_inmemory_rows_check_interrupt | 1000 | Number of rows buffered before interrupt check |
_inmemory_dbg_scan | 0 | In-memory scan debugging |
_inmemory_segment_populate_verify | 0 | In-memory segment populate verification |
_inmemory_query_check | 0 | In-memory query checking |
_inmemory_test_verification | 0 | In-memory verification testing |
_inmemory_invalidate_cursors | TRUE | In-memory populate enable cursor invalidations |
_inmemory_prepopulate_fg | 0 | Force prepopulate of in-memory segment in foreground |
_inmemory_prepopulate | TRUE | Enable inmemory populate by IMCO |
_inmemory_trickle_repopulate | TRUE | Enable inmemory trickle repopulate |
_inmemory_trickle_repopulate_threshold_dirty_ratio | 0 | IMCO Trickle Repopulate threshold dirty ratio |
_inmemory_trickle_repopulate_min_interval | 300 | IMCO Trickle Repopulate Interval |
_inmemory_trickle_repopulate_fg | 0 | Trickle Repopulate in the Foreground |
_inmemory_force_non_engineered | FALSE | force non-engineered systems in-memory behavior on RAC |
_inmemory_suppress_vsga_ima | FALSE | Suppress inmemory area in v$sga |
optimizer_inmemory_aware | TRUE | optimizer in-memory columnar awareness |
_optimizer_inmemory_table_expansion | TRUE | optimizer in-memory awareness for table expansion |
_optimizer_inmemory_gen_pushable_preds | TRUE | optimizer generate pushable predicates for in-memory |
_optimizer_inmemory_autodop | TRUE | optimizer autoDOP costing for in-memory |
_optimizer_inmemory_access_path | TRUE | optimizer access path costing for in-memory |
_optimizer_inmemory_quotient | 0 | in-memory quotient (% of rows in in-memory format) |
_optimizer_inmemory_pruning_ratio_rows | 100 | in-memory pruning ratio for # rows (% of rows remaining after pruning) |
_parallel_inmemory_min_time_threshold | AUTO | threshold above which a plan is a candidate for parallelization for in-memory tables (in seconds) |
_parallel_inmemory_time_unit | 1 | unit of work used to derive the degree of parallelism for in-memory tables (in seconds) |
_optimizer_inmemory_bloom_filter | TRUE | controls serial bloom filter for in-memory tables |
_optimizer_inmemory_cluster_aware_dop | TRUE | Affinitize DOP for inmemory objects |
_optimizer_inmemory_minmax_pruning | TRUE | controls use of min/max pruning for costing in-memory tables |
test
In-Memory Database Cache IM in-memory ((null)) IM_transaction IM transaction layer ((null)) IM_Txn_PJ IM Txn Private Journal (ktmpj) IM_Txn_SJ IM Txn Shared Journal (ktmsj) IM_Txn_JS IM Txn Journal Scan (ktmjs) IM_Txn_Conc IM Txn Concurrency (ktmc) IM_Txn_Blk IM Txn Block (ktmb) IM_Txn_Read IM Txn Read (ktmr) IM_space IM space layer ((null)) IM_data IM data layer (kdm) IM_populate IM populating (kdml) IM_background IM background (kdmr) IM_scan IM scans ((null)) IM_journal IM journal ((null)) IM_dump IM dump ((null)) IM_FS IM faststart ((null)) IM_optimizer IM optimizer (kdmo) alter session set events 'trace[IM_scan] disk=medium'; SQL> alter system set inmemory_size=2g scope=spfile; System altered. SQL> shutdown immediate; [oracle@mlab2 ~]$ sqlplus / as sysdba SQL*Plus: Release 12.1.0.2.0 Production on Wed Sep 3 23:18:18 2014 Copyright (c) 1982, 2014, Oracle. All rights reserved. Connected to an idle instance. SQL> startup; ORACLE instance started. Total System Global Area 2684354560 bytes Fixed Size 2928008 bytes Variable Size 402653816 bytes Database Buffers 117440512 bytes Redo Buffers 13848576 bytes In-Memory Area 2147483648 bytes Database mounted. Database opened. alter session set events 'trace[IM_scan] disk=medium'; select count(*) from mac_imm1; SQL> oradebug setmypid Statement processed. SQL> oradebug tracefile_name /s01/diag/rdbms/c12r1/C12R1/trace/C12R1_ora_16700.trc kdmsirs(): map with 13 extents Ext: 0, dba: 0x18000db, len: 5, skp: 0 Ext: 1, dba: 0x18000e0, len: 8, skp: 0 Ext: 2, dba: 0x18000e9, len: 7, skp: 0 Ext: 3, dba: 0x18000f0, len: 8, skp: 0 Ext: 4, dba: 0x18000f9, len: 7, skp: 0 Ext: 5, dba: 0x1800100, len: 8, skp: 0 Ext: 6, dba: 0x1800109, len: 7, skp: 0 Ext: 7, dba: 0x1800110, len: 8, skp: 0 Ext: 8, dba: 0x1800119, len: 7, skp: 0 Ext: 9, dba: 0x1800120, len: 8, skp: 0 Ext: 10, dba: 0x1800129, len: 7, skp: 0 Ext: 11, dba: 0x1800130, len: 8, skp: 0 Ext: 12, dba: 0x1800139, len: 1, skp: 0 kdmsStartEndDBA(): scan start: 0x18000db end: 0x18000df rdba[0]: 0x18000db size[0]: 5, nblks: 5 extno: 0, skip: 0 kdmsGetIMCU(): In arguments: nblks 5: start_addr 25166043, end_addr 25166047 kdmsGetIMCU(): Mem addr: baffffd0: mem len: 1048576: Start dba: 0x18000db 25166043: len: 5 smu: fbf44770 td: 0x7f76515361a8 kdmsGetIMCU(): range: 0 lrid dba: 0x0 slot: 0 hrid dba: 0x0 slot: 0 kdmsGetIMCU(): found imcu 0xbaffffd0 25166043 25166047 1 kdst_fetch_imc(): imcu get 0x18000db kdmsTransGet(): got ktmrds for dba 0x18000db, td : 0x7f76515361a8 kdmsFindEndDba: ext in imcu is 0, and on disk 0 IMCU extents extent 0: 25166043 0x18000db + 5 extent 1: 25166048 0x18000e0 + 8 extent 2: 25166057 0x18000e9 + 7 extent 3: 25166064 0x18000f0 + 8 extent 4: 25166073 0x18000f9 + 7 extent 5: 25166080 0x1800100 + 8 extent 6: 25166089 0x1800109 + 7 extent 7: 25166096 0x1800110 + 8 extent 8: 25166105 0x1800119 + 7 extent 9: 25166112 0x1800120 + 8 extent 10: 25166121 0x1800129 + 7 extent 11: 25166128 0x1800130 + 8 extent 12: 25166137 0x1800139 + 1 Disk extents extent 0: 25166043 0x18000db + 5 (skip = 0) extent 1: 25166048 0x18000e0 + 8 (skip = 0) extent 2: 25166057 0x18000e9 + 7 (skip = 0) extent 3: 25166064 0x18000f0 + 8 (skip = 0) extent 4: 25166073 0x18000f9 + 7 (skip = 0) extent 5: 25166080 0x1800100 + 8 (skip = 0) extent 6: 25166089 0x1800109 + 7 (skip = 0) extent 7: 25166096 0x1800110 + 8 (skip = 0) extent 8: 25166105 0x1800119 + 7 (skip = 0) extent 9: 25166112 0x1800120 + 8 (skip = 0) extent 10: 25166121 0x1800129 + 7 (skip = 0) extent 11: 25166128 0x1800130 + 8 (skip = 0) extent 12: 25166137 0x1800139 + 1 (skip = 0) kdmsFindEndDba(): begin: 25166043, end dba: 25166137 done ext in imcu 12 on disk 12 min of imcu end 25166138 0x180013a disk end 25166138 0x180013a discont 0 kdst_fetch_imc(): done: 1, empty: 0, ftch: 0 kdst_fetch_imc(): fetch: 0, invalid: 0 kdmsRepopulate(): repop 0 nblks 89 0 nrows 2342 0 cnt 5 kdstf00100010001101kmP(): create vv 18000db 95 kdmsCreateIMCUValidVector: Scan range (25166043, 25166137) Extent map passed into kdzd layer: Extent 0: (25166043, 25166047) Extent 1: (25166048, 25166055) Extent 2: (25166057, 25166063) Extent 3: (25166064, 25166071) Extent 4: (25166073, 25166079) Extent 5: (25166080, 25166087) Extent 6: (25166089, 25166095) Extent 7: (25166096, 25166103) Extent 8: (25166105, 25166111) Extent 9: (25166112, 25166119) Extent 10: (25166121, 25166127) Extent 11: (25166128, 25166135) Extent 12: (25166137, 25166137) kdzd_dump_validvec: IMCU: 1 Num slots: 2342 set: 2342 rounded to 8: 2368 bytes: 296 Flag if all rows valid: 1 ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff. ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.ff.3f. 3 final 0 kdzd_dump_validvec: End Dumping Valid Vector **************** ktmrDS Dump ***************** pdb=0, tsn=4, rdba=25166043, objn=91999, objd=91999, typ=1, gflg=0 flg=0 loadscn=scn: 0x0000.001af80b invalid blkcnt=0, fetch blkcnt=0 env [0x7f765152af6c]: (scn: 0x0000.001af830 xid: 0x0000.000.00000000 uba: 0x00000000.0000.00 statement num=0 parent xid: 0x0000.000.00000000 st-scn: 0x0000.00000000 hi-scn: 0x0000.00000000 ma-scn: 0x0000.001af82c flg: 0x00000660)invalid rowcnt=0, fetch rowcnt=0 kdst_fetch_imc(): release 0x18000db from td: 0x7f76515361a8 kdmsGetJournalRows(): done with IMC fetch; journal rows -1 kdmsEnd(): imcuctx 0x7f7651688b78 release 0x18000db from td: 0x7f76515361a8
Related posts:
- 【Oracle Database 12c新特性】In-Memory Option
- #ORACLE 12c in-memory#
- Know More about Oracle PGA Memory
- #揭秘Oracle 12c in-memory option#
- EVENT 10235:"check memory manager internal structures"
- ora-4031 and "obj stat memory" component in Shared Pool
- How GoldenGate process consumes memory
- Large Memory Footprints on AIX
- 【Oracle Database 12c新特性】Database Statistics 描述
- 那些在11gR2中可能惹祸的新特性,一张列表帮助你摆脱升级11gR2带来的烦恼
原文地址:【Oracle 12c】In-Memory Database Cache内存数据库选项, 感谢原作者分享。

InnoDB menggunakan redolog dan undologs untuk memastikan konsistensi dan kebolehpercayaan data. 1. Pengubahsuaian halaman data rekod untuk memastikan pemulihan kemalangan dan kegigihan transaksi. 2.UNDOLOGS merekodkan nilai data asal dan menyokong penggantian transaksi dan MVCC.

Metrik utama untuk menjelaskan arahan termasuk jenis, kunci, baris, dan tambahan. 1) Jenis mencerminkan jenis akses pertanyaan. Semakin tinggi nilai, semakin tinggi kecekapan, seperti const adalah lebih baik daripada semua. 2) Kunci memaparkan indeks yang digunakan, dan null menunjukkan tiada indeks. 3) Baris menganggarkan bilangan baris yang diimbas, yang mempengaruhi prestasi pertanyaan. 4) Tambahan memberikan maklumat tambahan, seperti menggunakanFilesort meminta bahawa ia perlu dioptimumkan.

MenggunakanTemary menunjukkan bahawa keperluan untuk membuat jadual sementara dalam pertanyaan MySQL, yang biasanya dijumpai di Orderby menggunakan lajur yang berbeza, GroupBy, atau tidak diindeks. Anda boleh mengelakkan berlakunya indeks dan menulis semula pertanyaan dan meningkatkan prestasi pertanyaan. Khususnya, apabila menggunakan pembelian muncul dalam menjelaskan output, ini bermakna MySQL perlu membuat jadual sementara untuk mengendalikan pertanyaan. Ini biasanya berlaku apabila: 1) deduplikasi atau pengelompokan apabila menggunakan yang berbeza atau kumpulan; 2) Susun apabila Orderby mengandungi lajur bukan indeks; 3) Gunakan subquery kompleks atau menyertai operasi. Kaedah Pengoptimuman termasuk: 1) Orderby dan GroupB

MySQL/InnoDB menyokong empat tahap pengasingan transaksi: ReadUncommitted, ReadCommitted, RepeatableRead dan Serializable. 1. ReadoMuncommitted membolehkan membaca data yang tidak komited, yang boleh menyebabkan bacaan kotor. 2. 3.RepeatableRead adalah tahap lalai, mengelakkan bacaan kotor dan bacaan yang tidak boleh diulang, tetapi bacaan hantu mungkin berlaku. 4. Serializable mengelakkan semua masalah konkurensi tetapi mengurangkan kesesuaian. Memilih tahap pengasingan yang sesuai memerlukan keseimbangan data konsistensi dan keperluan prestasi.

MySQL sesuai untuk aplikasi web dan sistem pengurusan kandungan dan popular untuk sumber terbuka, prestasi tinggi dan kemudahan penggunaan. 1) Berbanding dengan PostgreSQL, MySQL melakukan lebih baik dalam pertanyaan mudah dan operasi membaca serentak yang tinggi. 2) Berbanding dengan Oracle, MySQL lebih popular di kalangan perusahaan kecil dan sederhana kerana sumber terbuka dan kos rendah. 3) Berbanding dengan Microsoft SQL Server, MySQL lebih sesuai untuk aplikasi silang platform. 4) Tidak seperti MongoDB, MySQL lebih sesuai untuk data berstruktur dan pemprosesan transaksi.

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver CS6
Alat pembangunan web visual

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini