SQL中的模糊查询介绍
执行数据库查询时,有完整查询和模糊查询之分。 一般模糊语句如下: SELECT 字段 FROM 表 WHERE 某字段 Like 条件 其中关于条件,SQL提供了四种匹配模式: %:表示任意0个或多个字符。可匹配任意类型和长度的字符,有些情况下若是中文,请运用两个百分号(%%
执行数据库查询时,有完整查询和模糊查询之分。
一般模糊语句如下:
SELECT 字段 FROM 表 WHERE 某字段 Like 条件
其中关于条件,SQL提供了四种匹配模式:
- %:表示任意0个或多个字符。可匹配任意类型和长度的字符,有些情况下若是中文,请运用两个百分号(%%)表示。
- _: 表示任意单个字符。匹配单个任意字符,它常用来限定表达式的字符长度语句:
- [ ]:表示括号内所列字符中的一个(类似正则表达式)。指定一个字符、字符串或范围,要求所匹配对象为它们中的任一个。
- [^ ] :表示不在括号所列之内的单个字符。其取值和 [] 相同,但它要求所匹配对象为指定字符以外的任一个字符。
- 查询内容包含通配符时
比如 SELECT * FROM [user] WHERE u_name LIKE '%三%'
将会把u_name为“张三”,“张猫三”、“三脚猫”,“唐三藏”等等有“三”的记录全找出来。
另外,如果须要找出u_name中既有“三”又有“猫”的记录,请运用 and条件
SELECT * FROM [user] WHERE u_name LIKE '%三%' AND u_name LIKE '%猫%'
若运用 SELECT * FROM [user] WHERE u_name LIKE '%三%猫%'
虽然能搜索出“三脚猫”,但不能搜索出符合条件的“张猫三”。
比如 SELECT * FROM [user] WHERE u_name LIKE '_三_'
只找出“唐三藏”这样u_name为三个字且中间一个字是“三”的;
再比如 SELECT * FROM [user] WHERE u_name LIKE '三__';
只找出“三脚猫”这样name为三个字且第一个字是“三”的;
比如 SELECT * FROM [user] WHERE u_name LIKE '[张李王]三'
将找出“张三”、“李三”、“王三”(而不是“张李王三”);
如 [ ] 内有一系列字符(01234、abcde之类的)则可略写为“0-4”、“a-e”
SELECT * FROM [user] WHERE u_name LIKE '老[1-9]'
将找出“老1”、“老2”、……、“老9”;
比如 SELECT * FROM [user] WHERE u_name LIKE '[^张李王]三'
将找出不姓“张”、“李”、“王”的“赵三”、“孙三”等;
SELECT * FROM [user] WHERE u_name LIKE '老[^1-4]';
将排除“老1”到“老4”,寻找“老5”、“老6”、……
由于通配符的缘故,导致我们查询特殊字符“%”、“_”、“[”的语句不能正常实现,而把特殊字符用“[ ]”括起便可正常查询。据此我们写出以下函数:
function sqlencode(str) str=replace(str,"[","[[]") '此句一定要在最前 str=replace(str,"_","[_]") str=replace(str,"%","[%]") sqlencode=str end function
在查询前将待查字符串先经该函数处理即可。

InnoDB menggunakan redolog dan undologs untuk memastikan konsistensi dan kebolehpercayaan data. 1. Pengubahsuaian halaman data rekod untuk memastikan pemulihan kemalangan dan kegigihan transaksi. 2.UNDOLOGS merekodkan nilai data asal dan menyokong penggantian transaksi dan MVCC.

Metrik utama untuk menjelaskan arahan termasuk jenis, kunci, baris, dan tambahan. 1) Jenis mencerminkan jenis akses pertanyaan. Semakin tinggi nilai, semakin tinggi kecekapan, seperti const adalah lebih baik daripada semua. 2) Kunci memaparkan indeks yang digunakan, dan null menunjukkan tiada indeks. 3) Baris menganggarkan bilangan baris yang diimbas, yang mempengaruhi prestasi pertanyaan. 4) Tambahan memberikan maklumat tambahan, seperti menggunakanFilesort meminta bahawa ia perlu dioptimumkan.

MenggunakanTemary menunjukkan bahawa keperluan untuk membuat jadual sementara dalam pertanyaan MySQL, yang biasanya dijumpai di Orderby menggunakan lajur yang berbeza, GroupBy, atau tidak diindeks. Anda boleh mengelakkan berlakunya indeks dan menulis semula pertanyaan dan meningkatkan prestasi pertanyaan. Khususnya, apabila menggunakan pembelian muncul dalam menjelaskan output, ini bermakna MySQL perlu membuat jadual sementara untuk mengendalikan pertanyaan. Ini biasanya berlaku apabila: 1) deduplikasi atau pengelompokan apabila menggunakan yang berbeza atau kumpulan; 2) Susun apabila Orderby mengandungi lajur bukan indeks; 3) Gunakan subquery kompleks atau menyertai operasi. Kaedah Pengoptimuman termasuk: 1) Orderby dan GroupB

MySQL/InnoDB menyokong empat tahap pengasingan transaksi: ReadUncommitted, ReadCommitted, RepeatableRead dan Serializable. 1. ReadoMuncommitted membolehkan membaca data yang tidak komited, yang boleh menyebabkan bacaan kotor. 2. 3.RepeatableRead adalah tahap lalai, mengelakkan bacaan kotor dan bacaan yang tidak boleh diulang, tetapi bacaan hantu mungkin berlaku. 4. Serializable mengelakkan semua masalah konkurensi tetapi mengurangkan kesesuaian. Memilih tahap pengasingan yang sesuai memerlukan keseimbangan data konsistensi dan keperluan prestasi.

MySQL sesuai untuk aplikasi web dan sistem pengurusan kandungan dan popular untuk sumber terbuka, prestasi tinggi dan kemudahan penggunaan. 1) Berbanding dengan PostgreSQL, MySQL melakukan lebih baik dalam pertanyaan mudah dan operasi membaca serentak yang tinggi. 2) Berbanding dengan Oracle, MySQL lebih popular di kalangan perusahaan kecil dan sederhana kerana sumber terbuka dan kos rendah. 3) Berbanding dengan Microsoft SQL Server, MySQL lebih sesuai untuk aplikasi silang platform. 4) Tidak seperti MongoDB, MySQL lebih sesuai untuk data berstruktur dan pemprosesan transaksi.

Cardinality Indeks MySQL mempunyai kesan yang signifikan terhadap prestasi pertanyaan: 1. Indeks kardinaliti yang tinggi dapat lebih berkesan menyempitkan julat data dan meningkatkan kecekapan pertanyaan; 2. Indeks kardinaliti yang rendah boleh membawa kepada pengimbasan jadual penuh dan mengurangkan prestasi pertanyaan; 3. Dalam indeks bersama, urutan kardinaliti yang tinggi harus diletakkan di depan untuk mengoptimumkan pertanyaan.

Laluan pembelajaran MySQL termasuk pengetahuan asas, konsep teras, contoh penggunaan, dan teknik pengoptimuman. 1) Memahami konsep asas seperti jadual, baris, lajur, dan pertanyaan SQL. 2) Ketahui definisi, prinsip kerja dan kelebihan MySQL. 3) menguasai operasi CRUD asas dan penggunaan lanjutan, seperti indeks dan prosedur yang disimpan. 4) Biasa dengan debugging kesilapan biasa dan cadangan pengoptimuman prestasi, seperti penggunaan rasional indeks dan pertanyaan pengoptimuman. Melalui langkah -langkah ini, anda akan memahami sepenuhnya penggunaan dan pengoptimuman MySQL.

Aplikasi dunia nyata MySQL termasuk reka bentuk pangkalan data asas dan pengoptimuman pertanyaan kompleks. 1) Penggunaan Asas: Digunakan untuk menyimpan dan mengurus data pengguna, seperti memasukkan, menanyakan, mengemas kini dan memadam maklumat pengguna. 2) Penggunaan lanjutan: Mengendalikan logik perniagaan yang kompleks, seperti perintah dan pengurusan inventori platform e-dagang. 3) Pengoptimuman Prestasi: Meningkatkan prestasi dengan menggunakan indeks, jadual partisi dan cache pertanyaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver CS6
Alat pembangunan web visual

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini