search
HomeBackend DevelopmentPython TutorialJava相比Python3有哪些优势?

这些优势主要体现在哪些领域和什么样的情景?

回复内容:

双方都可以列出很多优点,然而这个问题太过草率了……

这里替Java说几句话:
JVM的质量远胜于 Python 的虚拟机。在JVM环境可以构建起高质量的Python解释环境,反过来不行。
Java对IDE更友好。





你要想骗Python程序员加班,得谈人生理想,谈股权,谈加班费,谈情怀。跟Java程序员谈加班,告诉他这是编程规范就好了。 没有什么谁比谁好,只有谁更适应。
java:用的人多,平台,工具,库很成熟。企业级应用比较多
python3:灵活,现在正在流行中,后台开发用它也是很快的。 可以把小项目轻而易举地写成大型项目。 Python写一些简单的脚本,小项目比较方便,迭代也快。
当项目大到一定程度java就有优势了,项目易于维护管理。


动态类型用起来方便,然而并不是很让人放心 除了500行上下的临时脚本之外,Java几乎在任何场合都比Python好
  1. 绝对性能好;又是真多线程
  2. 绝大多数Java的库都是Pure的(即纯Java字节码),可以随便部署到目标机上不用担心跑不起来。Jar格式可以自己任意合并
  3. 有JMX植入式对象监视器/控制器
  4. 强静态类型系统意味着编译器和静态检查器自动帮你写了N多测试
  5. 没有2 or 3版本大分裂(绝杀)
说Java不好的人一般都是嫌Java常见框架累赘 -- 这个完全可以用自己写的轻量框架代替。还有些人嫌某些Java IDE不Sexy,这简直是现代版买椟还珠(何况我觉得IntelliJ IDEA够好看的了) 我有个比较“激进”的观点:你要是采用面向对象方式开发软件,特别是那些规模大些的包容复杂逻辑和处理流程的软件系统,从分析、设计、再到实现,面向对象 一条线贯通下来,那就请把动态类型的诸如Python之类编程语言给忘了吧,动态语言的灵活性在这种场合,带来的不是好处是麻烦,使用Java/C#之类是更合适的选择。
举两个例子,使用面向对象思路进行软件系统的分析与设计时,一个基本的原则是:类和对象的职责一定要尽可能地明确。还有一个基本原则:找出变化点,然后封装它,让它的变化对系统其他部分的影响最小。
看到没有?为了提升系统的可维护性,我们是希望尽量地控制“可变”因素对系统所带来的影响的。既然如此,一个方法与属性可以随时添加与移除的对象,与面向对象设计原则是不是有冲突?
你非要在分析设计时想着:“哟,我用动态编程语言实现的,因此对象方法与属性是可以随时变化的,我要按照这个特点进行设计”,当然没人拦着你这么做。但做过真实商业项目的人一定有体会,那不是几个十几个类,通常是数百上千个类,彼此之间还有着复杂的关联,它们创建的对象之间的交互相当复杂,通常必须遵循一堆的业务规则,就算是基于相对稳定的静态的类进行分析设计,己经够头大了,你再来几条“动态”的“变色龙”搅在里头,那滋味,自己体会吧! 这话反过来问估计会比较容易 两者的适用面都非常广。都算是万金油型的,只要你敢想,就可以用。。
当然java各种开发库更多。话说,python 91年就出来了,比java和Php都要早。。现在才熬出头。。我一直以为它是一个比较新的语言来着。。

然后,大项目开发上,java更合适。甚至,如果是不是那种密集计算型的,是比c++要好的。
因为java开发效率虽然比不上python。。
但两者是可以一起鄙视c++的。
所以对于创业公司来说,c++在前期是完全不用考虑的,什么时候用?用户千万级别。不过大部分活不到哪个时候就跪了。。所以,Python和java是创业公司不错的选择。

然后,java更适合大项目,是因为java在中期,用户在百万级别左右,但是千万不到。。发现并发,内存各种不够,但好像优化一把也可以用的时候。。
虽然用Python可以拓展c,但终究还是麻烦。
这个时候,jvm的强大之处就出现了。可以各种优化,找个熟悉jvm的人,优化效率就能提升不少。

大点的项目,都是选c++或者java为主,然后Python或者lua做边角料,缝缝补补。。 用java写了个程序爬点小资料,扩展的时候听说python不错,就想拿来试试。
结果写了三天了,控制台还没打出中文来,据说是beautifulsoup的问题 java岗位多,好找工作。
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Professional Error Handling With PythonProfessional Error Handling With PythonMar 04, 2025 am 10:58 AM

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools