search
HomeBackend DevelopmentPython TutorialPython入门教程 超详细1小时学会Python

为什么使用Python
    假设我们有这么一项任务:简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200.  

    思路:用shell编程.(Linux通常是bash而Windows是批处理脚本).例如,在Windows上用ping ip 的命令依次测试各个机器并得到控制台输出.由于ping通的时候控制台文本通常是"Reply from ... " 而不通的时候文本是"time out ... " ,所以,在结果中进行字符串查找,即可知道该机器是否连通.

    实现:Java代码如下:

String cmd="cmd.exe ping ";
String ipprefix
="192.168.10.";
int begin=101;
int end=200;
Process p
=null;

for(int i=begin;iend;i++){
     p
= Runtime.getRuntime().exec(cmd+i);
     String line 
= null;
     BufferedReader reader 
= new BufferedReader(new InputStreamReader(p.getInputStream()));
     
while((line = reader.readLine()) != null)
     {
         
//Handling line , may logs it.
     }
    reader.close();
    p.destroy();
}

    这段代码运行得很好,问题是为了运行这段代码,你还需要做一些额外的工作.这些额外的工作包括:
  • 编写一个类文件
  • 编写一个main方法
  • 将之编译成字节代码
  • 由于字节代码不能直接运行,你需要再写个小小的bat或者bash脚本来运行.
    当然,用C/C++同样能完成这项工作.但C/C++不是跨平台语言.在这个足够简单的例子中也许看不出C/C++和Java实现的区别,但在一些更为复杂的场景,比如要将连通与否的信息记录到网络数据库.由于Linux和Windows的网络接口实现方式不同,你不得不写两个函数的版本.用Java就没有这样的顾虑.

    同样的工作用Python实现如下:


import subprocess

cmd
="cmd.exe"
begin
=101
end
=200
while beginend:

    p
=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE,
                   stdin
=subprocess.PIPE,
                   stderr
=subprocess.PIPE)
    p.stdin.write(
"ping 192.168.1."+str(begin)+"\n")

    p.stdin.close()
    p.wait()

    print 
"execution result: %s"%p.stdout.read()

    对比Java,Python的实现更为简洁,你编写的时间更快.你不需要写main函数,并且这个程序保存之后可以直接运行.另外,和Java一样,Python也是跨平台的.

    有经验的C/Java程序员可能会争论说用C/Java写会比Python写得快.这个观点见仁见智.我的想法是当你同时掌握Java和Python之后,你会发现用Python写这类程序的速度会比Java快上许多.例如操作本地文件时你仅需要一行代码而不需要Java的许多流包装类.各种语言有其天然的适合的应用范围.用Python处理一些简短程序类似与操作系统的交互编程工作最省时省力.


Python应用场合
    足够简单的任务,例如一些shell编程.如果你喜欢用Python设计大型商业网站或者设计复杂的游戏,悉听尊便.


2 快速入门

2.1 Hello world
    安装完Python之后(我本机的版本是2.5.4),打开IDLE(Python GUI) , 该程序是Python语言解释器,你写的语句能够立即运行.我们写下一句著名的程序语句:

print "Hello,world!"

    并按回车.你就能看到这句被K&R引入到程序世界的名言.

    在解释器中选择"File"--"New Window" 或快捷键 Ctrl+N , 打开一个新的编辑器.写下如下语句:

print "Hello,world!"
raw_input(
"Press enter key to close this windowPython入门教程 超详细1小时学会Python");

    保存为a.py文件.按F5,你就可以看到程序的运行结果了.这是Python的第二种运行方式.

    找到你保存的a.py文件,双击.也可以看到程序结果.Python的程序能够直接运行,对比Java,这是一个优势.


2.2 国际化支持
    我们换一种方式来问候世界.新建一个编辑器并写如下代码:

print "欢迎来到奥运中国!"
raw_input(
"Press enter key to close this windowPython入门教程 超详细1小时学会Python");

    在你保存代码的时候,Python会提示你是否改变文件的字符集,结果如下:

# -*- coding: cp936 -*-

print "欢迎来到奥运中国!"
raw_input(
"Press enter key to close this windowPython入门教程 超详细1小时学会Python");

    将该字符集改为我们更熟悉的形式:

# -*- coding: GBK -*-

print "欢迎来到奥运中国!" # 使用中文的例子
raw_input(
"Press enter key to close this windowPython入门教程 超详细1小时学会Python");

    程序一样运行良好.

2.3 方便易用的计算器
    用微软附带的计算器来计数实在太麻烦了.打开Python解释器,直接进行计算:

a=100.0
b
=201.1
c
=2343
print (a
+b+c)/c


2.4 字符串,ASCII和UNICODE

    可以如下打印出预定义输出格式的字符串:

print """
Usage: thingy [OPTIONS]
     
-h                        Display this usage message
     
-H hostname               Hostname to connect to
"""

    字符串是怎么访问的?请看这个例子:

word="abcdefg"
a
=word[2]
print 
"a is: "+a
b
=word[1:3]
print 
"b is: "+b # index 1 and 2 elements of word.
c
=word[:2]
print 
"c is: "+c # index 0 and 1 elements of word.
d
=word[0:]
print 
"d is: "+d # All elements of word.
e
=word[:2]+word[2:]
print 
"e is: "+e # All elements of word.
f
=word[-1]
print 
"f is: "+f # The last elements of word.
g
=word[-4:-2]
print 
"g is: "+g # index 3 and 4 elements of word.
h
=word[-2:]
print 
"h is: "+h # The last two elements.
i
=word[:-2]
print 
"i is: "+i # Everything except the last two characters
l
=len(word)
print 
"Length of word is: "+ str(l)

    请注意ASCII和UNICODE字符串的区别:

print "Input your Chinese name:"
s
=raw_input("Press enter to be continuedPython入门教程 超详细1小时学会Python");
print 
"Your name is Python入门教程 超详细1小时学会Python : " +s;
l
=len(s)
print 
"Length of your Chinese name in asc codes is:"+str(l);
a
=unicode(s,"GBK")
l
=len(a)
print 
"I'm sorry we should use unicode char!Characters number of your Chinese \
name in unicode is:"+str(l);


2.5 使用List
    类似Java里的List,这是一种方便易用的数据类型:

word=['a','b','c','d','e','f','g']
a
=word[2]
print 
"a is: "+a
b
=word[1:3]
print 
"b is: "
print b # index 
1 and 2 elements of word.
c
=word[:2]
print 
"c is: "
print c # index 
0 and 1 elements of word.
d
=word[0:]
print 
"d is: "
print d # All elements of word.
e
=word[:2]+word[2:]
print 
"e is: "
print e # All elements of word.
f
=word[-1]
print 
"f is: "
print f # The last elements of word.
g
=word[-4:-2]
print 
"g is: "
print g # index 
3 and 4 elements of word.
h
=word[-2:]
print 
"h is: "
print h # The last two elements.
i
=word[:-2]
print 
"i is: "
print i # Everything except the last two characters
l
=len(word)
print 
"Length of word is: "+ str(l)
print 
"Adds new elementPython入门教程 超详细1小时学会Python"
word.append(
'h')
print word


2.6 条件和循环语句
# Multi-way decision
x
=int(raw_input("Please enter an integer:"))
if x0:
    x
=0
    print 
"Negative changed to zero"

elif x
==0:
    print 
"Zero"

else:
    print 
"More"


# Loops List
= ['cat''window''defenestrate']
for x in a:
    print x, len(x)


2.7 如何定义函数
# Define and invoke function.
def sum(a,b):
    
return a+b


func 
= sum
= func(5,6)
print r

# Defines function with 
default argument
def add(a,b
=2):
    
return a+b
r
=add(1)
print r
r
=add(1,5)
print r

    并且,介绍一个方便好用的函数:

# The range() function
=range(5,10)
print a
= range(-2,-7)
print a
= range(-7,-2)
print a
= range(-2,-11,-3) # The 3rd parameter stands for step
print a


2.8 文件I/O
spath="D:/download/baa.txt"
f
=open(spath,"w") # Opens file for writing.Creates this file doesn't exist.
f.write("First line 1.\n")
f.writelines(
"First line 2.")

f.close()

f
=open(spath,"r") # Opens file for reading

for line in f:
    print line

f.close()


2.9 异常处理

s=raw_input("Input your age:")
if s =="":
    raise Exception(
"Input must no be empty.")

try:
    i
=int(s)
except ValueError:
    print 
"Could not convert data to an integer."
except:
    print 
"Unknown exception!"
else: # It is useful for code that must be executed if the try clause does not raise an exception
    print 
"You are %d" % i," years old"
finally: # Clean up action
    print 
"Goodbye!"



2.10 类和继承
class Base:
    def __init__(self):
        self.data 
= []
    def add(self, x):
        self.data.append(x)
    def addtwice(self, x):
        self.add(x)
        self.add(x)

# Child extends Base
class Child(Base):
    def plus(self,a,b):
        
return a+b

oChild 
=Child()
oChild.add(
"str1")
print oChild.data
print oChild.plus(
2,3)



2.11 包机制
    每一个.py文件称为一个module,module之间可以互相导入.请参看以下例子:
# a.py
def add_func(a,b):
    
return a+b

# b.py
from a import add_func # Also can be : import a

print 
"Import add_func from module a"
print 
"Result of 1 plus 2 is: "
print add_func(
1,2)    # If using "import a" , then here should be "a.add_func"


    module可以定义在包里面.Python定义包的方式稍微有点古怪,假设我们有一个parent文件夹,该文件夹有一个child子文件夹.child中有一个module a.py . 如何让Python知道这个文件层次结构?很简单,每个目录都放一个名为_init_.py 的文件.该文件内容可以为空.这个层次结构如下所示:
parent 
  
--__init_.py
  
--child
    
-- __init_.py
    
--a.py

b.py

    那么Python如何找到我们定义的module?在标准包sys中,path属性记录了Python的包路径.你可以将之打印出来:

import sys

print sys.path

    通常我们可以将module的包路径放到环境变量PYTHONPATH中,该环境变量会自动添加到sys.path属性.另一种方便的方法是编程中直接指定我们的module路径到sys.path 中:

import sys
sys.path.append(
'D:\\download')

from parent.child.a import add_func


print sys.path

print 
"Import add_func from module a"
print 
"Result of 1 plus 2 is: "
print add_func(
1,2)



总结

    你会发现这个教程相当的简单.许多Python特性在代码中以隐含方式提出,这些特性包括:Python不需要显式声明数据类型,关键字说明,字符串函数的解释等等.我认为一个熟练的程序员应该对这些概念相当了解,这样在你挤出宝贵的一小时阅读这篇短短的教程之后,你能够通过已有知识的迁移类比尽快熟悉Python,然后尽快能用它开始编程.

    当然,1小时学会Python颇有哗众取宠之嫌.确切的说,编程语言包括语法和标准库.语法相当于武术招式,而标准库应用实践经验则类似于内功,需要长期锻炼.Python学习了Java的长处,提供了大量极方便易用的标准库供程序员"拿来主义".(这也是Python成功的原因),在开篇我们看到了Python如何调用Windows cmd的例子,以后我会尽量写上各标准库的用法和一些应用技巧,让大家真正掌握Python.

    但不管怎样,至少你现在会用Python代替繁琐的批处理写程序了.希望那些真的能在一小时内读完本文并开始使用Python的程序员会喜欢这篇小文章,谢谢!
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Professional Error Handling With PythonProfessional Error Handling With PythonMar 04, 2025 am 10:58 AM

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version