search
HomeBackend DevelopmentPython Tutorial在Django中使用Sitemap的方法讲解

sitemap 是你服务器上的一个XML文件,它告诉搜索引擎你的页面的更新频率和某些页面相对于其它页面的重要性。 这个信息会帮助搜索引擎索引你的网站。

例如,这是 Django 网站(http://www.djangoproject.com/sitemap.xml)sitemap的一部分:

<&#63;xml version="1.0" encoding="UTF-8"&#63;>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
  <loc>http://www.djangoproject.com/documentation/</loc>
  <changefreq>weekly</changefreq>
  <priority>0.5</priority>
 </url>
 <url>
  <loc>http://www.djangoproject.com/documentation/0_90/</loc>
  <changefreq>never</changefreq>
  <priority>0.1</priority>
 </url>
 ...
</urlset>

需要了解更多有关 sitemaps 的信息, 请参见 http://www.sitemaps.org/.

Django sitemap 框架允许你用 Python 代码来表述这些信息,从而自动创建这个XML文件。 要创建一个站点地图,你只需要写一个`` Sitemap`` 类,并且在URLconf中指向它。
安装

要安装 sitemap 应用程序, 按下面的步骤进行:

  •     将 'django.contrib.sitemaps' 添加到您的 INSTALLED_APPS 设置中.
  •     确保 'django.template.loaders.app_directories.load_template_source' 在您的 TEMPLATE_LOADERS 设置中。 默认情况下它在那里, 所以, 如果你已经改变了那个设置的话, 只需要改回来即可。
  •     确定您已经安装了 sites 框架.

Note

sitemap 应用程序没有安装任何数据库表. 它需要加入到 INSTALLED_APPS 中的唯一原因是: 这样 load_template_source 模板加载器可以找到默认的模板. The only reason it needs to go into INSTALLED_APPS is so the load_template_source template loader can find the default templates.
Initialization

要在您的Django站点中激活sitemap生成, 请在您的 URLconf 中添加这一行:

(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})

This line tells Django to build a sitemap when a client accesses /sitemap.xml . Note that the dot character in sitemap.xml is escaped with a backslash, because dots have a special meaning in regular expressions.

sitemap文件的名字无关紧要,但是它在服务器上的位置却很重要。 搜索引擎只索引你的sitemap中当前URL级别及其以下级别的链接。 用一个实例来说,如果 sitemap.xml 位于你的根目录,那么它将引用任何的URL。 然而,如果你的sitemap位于 /content/sitemap.xml ,那么它只引用以 /content/ 打头的URL。

sitemap视图需要一个额外的必须的参数: {'sitemaps': sitemaps} . sitemaps should be a dictionary that maps a short section label (e.g., blog or news ) to its Sitemap class (e.g., BlogSitemap or NewsSitemap ). It may also map to an instance of a Sitemap class (e.g., BlogSitemap(some_var) ).
Sitemap 类

Sitemap 类展示了一个进入地图站点简单的Python类片断.例如,一个 Sitemap 类能展现所有日志入口,而另外一个能够调度所有的日历事件。 For example, one Sitemap class could represent all the entries of your weblog, while another could represent all of the events in your events calendar.

在最简单的例子中,所有部分可以全部包含在一个 sitemap.xml 中,也可以使用框架来产生一个站点地图,为每一个独立的部分产生一个单独的站点文件。

Sitemap 类必须是 django.contrib.sitemaps.Sitemap 的子类. 他们可以存在于您的代码树的任何地方。

例如假设你有一个blog系统,有一个 Entry 的model,并且你希望你的站点地图包含所有连到你的blog入口的超链接。 你的 Sitemap 类很可能是这样的:

from django.contrib.sitemaps import Sitemap
from mysite.blog.models import Entry

class BlogSitemap(Sitemap):
  changefreq = "never"
  priority = 0.5

  def items(self):
    return Entry.objects.filter(is_draft=False)

  def lastmod(self, obj):
    return obj.pub_date

声明一个 Sitemap 和声明一个 Feed 看起来很类似;这都是预先设计好的。

如同 Feed 类一样, Sitemap 成员也既可以是方法,也可以是属性。

一个 Sitemap 类可以定义如下 方法/属性:

    items (必需 ):提供对象列表。 框架并不关心对象的 类型 ;唯一关心的是这些对象会传递给 location() , lastmod() , changefreq() ,和 priority() 方法。

    location (可选): 给定对象的绝对URL。 绝对URL不包含协议名称和域名。 下面是一些例子:

  •         好的: '/foo/bar/' '/foo/bar/'
  •         差的: 'example.com/foo/bar/' 'example.com/foo/bar/'

    如果没有提供 location , 框架将会在每个 items() 返回的对象上调用 get_absolute_url() 方法.

    lastmod (可选): 对象的最后修改日期, 作为一个Python datetime 对象. The object's last modification date, as a Python datetime object.

    changefreq (可选): 对象变更的频率。 可选的值如下(详见Sitemaps文档):

  •         'always'
  •         'hourly'
  •         'daily'
  •         'weekly'
  •         'monthly'
  •         'yearly'
  •         'never'
  •     priority (可选): 取值范围在 0.0 and 1.0 之间,用来表明优先级。

快捷方式

sitemap框架提供了一些常用的类。 在下一部分中会看到。
FlatPageSitemap

django.contrib.sitemaps.FlatPageSitemap 类涉及到站点中所有的flat page,并在sitemap中建立一个入口。 但仅仅只包含 location 属性,不支持 lastmod , changefreq ,或者 priority 。

GenericSitemap

GenericSitemap 与所有的通用视图一同工作(详见第9章)。

你可以如下使用它,创建一个实例,并通过 info_dict 传递给通用视图。 唯一的要求是字典包含 queryset 这一项。 也可以用 date_field 来指明从 queryset 中取回的对象的日期域。 这会被用作站点地图中的 lastmod 属性。

下面是一个使用 FlatPageSitemap and GenericSiteMap (包括前面所假定的 Entry 对象)的URLconf:

from django.conf.urls.defaults import *
from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap
from mysite.blog.models import Entry

info_dict = {
  'queryset': Entry.objects.all(),
  'date_field': 'pub_date',
}

sitemaps = {
  'flatpages': FlatPageSitemap,
  'blog': GenericSitemap(info_dict, priority=0.6),
}

urlpatterns = patterns('',
  # some generic view using info_dict
  # ...

  # the sitemap
  (r'^sitemap\.xml$',
   'django.contrib.sitemaps.views.sitemap',
   {'sitemaps': sitemaps})
)

创建一个Sitemap索引

sitemap框架同样可以根据 sitemaps 字典中定义的单独的sitemap文件来建立索引。 用法区别如下:

    您在您的URLconf 中使用了两个视图: django.contrib.sitemaps.views.index 和 django.contrib.sitemaps.views.sitemap . `` django.contrib.sitemaps.views.index`` 和`` django.contrib.sitemaps.views.sitemap``

    django.contrib.sitemaps.views.sitemap 视图需要带一个 section 关键字参数.

这里是前面的例子的相关的 URLconf 行看起来的样子:

(r'^sitemap.xml$',
 'django.contrib.sitemaps.views.index',
 {'sitemaps': sitemaps}),

(r'^sitemap-(&#63;P<section>.+).xml$',
 'django.contrib.sitemaps.views.sitemap',
 {'sitemaps': sitemaps})

这将自动生成一个 sitemap.xml 文件, 它同时引用 sitemap-flatpages.xml 和 sitemap-blog.xml . Sitemap 类和 sitemaps 目录根本没有更改.
通知Google

当你的sitemap变化的时候,你会想通知Google,以便让它知道对你的站点进行重新索引。 框架就提供了这样的一个函数: django.contrib.sitemaps.ping_google() 。

ping_google() 有一个可选的参数 sitemap_url ,它应该是你的站点地图的URL绝对地址(例如:

如果不能够确定你的sitemap URL, ping_google() 会引发 django.contrib.sitemaps.SitemapNotFound 异常。

我们可以通过模型中的 save() 方法来调用 ping_google() :

from django.contrib.sitemaps import ping_google

class Entry(models.Model):
  # ...
  def save(self, *args, **kwargs):
    super(Entry, self).save(*args, **kwargs)
    try:
      ping_google()
    except Exception:
      # Bare 'except' because we could get a variety
      # of HTTP-related exceptions.
      pass

一个更有效的解决方案是用 cron 脚本或任务调度表来调用 ping_google() ,该方法使用Http直接请求Google服务器,从而减少每次调用 save() 时占用的网络带宽。 The function makes an HTTP request to Google's servers, so you may not want to introduce that network overhead each time you call save() .

Finally, if 'django.contrib.sitemaps' is in your INSTALLED_APPS , then your manage.py will include a new command, ping_google . This is useful for command-line access to pinging. For example:

python manage.py ping_google /sitemap.xml


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools