


python The Logging module is a powerful tool for application logging records to help developmentPeople easily log events, errors and information in their applications. By writing logging information to a file or to the console, the Logging module can provide valuable insights into application behavior, thereby improving application robustness and maintainability.
Configuring logging
Configuring the Logging module requires the logging.basicConfig()
function. This function accepts the following parameters:
- filename: Log file path
- level: Logging level (such as DEBUG, INFO, WARNING)
- format: Log record information format
- datefmt: Timestamp format
For example, the following code configures the Logging module to write all logging information to a file named "app.log":
import logging logging.basicConfig(filename="app.log", level=logging.DEBUG, fORMat="%(asctime)s %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
Logging level
The Logging module supports five logging levels, in increasing order of severity:
- DEBUG
- INFO
- WARNING
- ERROR
- CRITICAL
Logging information can be configured by setting the level
parameter to the corresponding level. For example, the logging.DEBUG
level logs all logging information, while the logging.ERROR
logs only error messages.
Logging method
The Logging module provides the following logging methods:
debug()
info()
warning()
error()
critical()
These methods accept the message to be logged as a parameter. For example, the following code logs an INFO level message:
logging.info("Application started successfully")
Logging handle
In addition to the basicConfig()
function, the Logging module also allows the creation of custom logging handlers. The handle can be used to log to different targets, such as the console, a file, or a remote server.
To create a handle, use the logging.getLogger()
function. For example, the following code creates a handle named "my_logger":
my_logger = logging.getLogger("my_logger")
The handle can then be added to the handle list using the addHandler()
method. For example, the following code adds a handle to the console:
my_logger.addHandler(logging.StreamHandler())
Logging Filter
Logging filters can be used to filter logging information based on certain conditions. Filters can be based on message level, source, or other custom criteria.
To create a filter, use the logging.Filter
class. Filters can be passed as arguments to the addHandler()
function. For example, the following code creates a filter that only logs messages of the INFO level or higher:
class MyFilter(logging.Filter): def filter(self, record): return record.levelno >= logging.INFO my_logger.addHandler(logging.StreamHandler(MyFilter()))
Best Practices
The following are some best practices for using the Logging module:
- Always configure logging: Make sure to configure the Logging module in your application to avoid unexpected behavior.
- Use the appropriate logging level: Select the correct logging level based on message severity.
- Using logging handles: Create custom logging handles to route logging information to multiple destinations.
- Use logging filters: Filter logging information to log only relevant messages.
- Logging Errors and Exceptions: Always log errors and exceptions to aid debugging and troubleshooting.
in conclusion
Python The Logging module is an invaluable tool for building robust and maintainable applications. By effectively recording application behavior, the Logging module helps early detection and resolution of problems, improving application reliability and stability. By following the best practices and techniques outlined in this article, developers can maximize the benefits of the Logging module and create applications with powerful logging capabilities.
The above is the detailed content of Python Logging module in action: Building robust logging applications. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools
