search
HomeTechnology peripheralsAIDeep neural networks for classification calibration and regression calibration
Deep neural networks for classification calibration and regression calibrationJan 22, 2024 pm 08:21 PM
machine learningArtificial neural networks

Deep neural networks for classification calibration and regression calibration

Deep neural network is a powerful machine learning model that can automatically learn features and patterns. However, in practical applications, the output of neural networks often needs to be calibrated to improve performance and reliability. Classification calibration and regression calibration are commonly used calibration techniques, and they have different principles and applications. This article will introduce in detail the working principles and application scenarios of these two technologies.

1. Classification calibration

Classification calibration is to improve the reliability and accuracy of the classifier by adjusting the probability distribution of the classifier output vector to achieve. In a classification problem, a neural network outputs a vector representing the predicted probability of each class. However, these probabilities are not always accurate and may be biased too high or too low. The goal of classification calibration is to adjust these probabilities to make them closer to the true probability distribution. This improves the performance of the classifier, making it more reliable in predicting the probabilities of different classes.

Commonly used classification calibration methods include the following two:

1. Temperature scaling

Temperature scaling is a simple and effective classification calibration technique. Its principle is to adjust the confidence of the classifier by scaling the output of the neural network. Specifically, temperature scaling introduces a temperature parameter T to scale the output of the last layer of the neural network, converting the original prediction probability p into the calibrated probability q:

q_i=\frac{p_i^{\frac{1}{T}}}{\sum_{j=1}^K p_j^{\frac{1}{T}}}

where, i represents the th i categories, K represents the total number of categories. When T=1, temperature scaling will not change the original prediction probability. When T>1, temperature scaling will increase the confidence of the classifier, making the prediction probability more concentrated and confident; when T

The advantages of temperature scaling are that it is simple to implement, low cost, and can be calibrated without retraining the model. However, temperature scaling is not guaranteed to effectively improve the performance of the classifier in all cases because it assumes that the errors of all categories are independent and on the same scale, which is not necessarily true in practical applications.

2.Platt calibration (Platt scaling)

Platt calibration is a relatively traditional classification calibration method, and its principle is based on logistic regression Model, fit the output of the neural network to obtain the calibrated probability distribution. Specifically, Platt calibration introduces a binary logistic regression model to fit the output of the neural network to obtain a new probability distribution. The input of the logistic regression model is the output or feature of the neural network, and the output is a probability value between 0 and 1. By fitting a logistic regression model, the corrected probability value for each category can be obtained.

The advantage of Platt calibration is that it can more accurately estimate the prediction probability and is suitable for a variety of different classification problems. However, Platt calibration requires model fitting, so the computational cost is high, and a large amount of labeled data is required to train the logistic regression model.

2. Regression calibration

Regression calibration refers to correcting the output of the regression model to make it more reliable and accurate. In regression problems, the output of a neural network is usually a continuous real value that represents the value of the predicted target variable. However, there may be bias or variance in these predicted values, requiring regression calibration to improve the accuracy and reliability of the predictions.

Commonly used regression calibration methods include the following two:

1. Historical Average Calibration

Historical average calibration is a simple and effective regression calibration technique. Its principle is to use historical data to calculate the mean and variance of the target variable, and then adjust the predicted value of the neural network. Specifically, historical average calibration obtains a calibration factor by calculating the mean and variance of historical data, and then corrects the predicted value of the neural network to make it closer to the true target value. The advantage of historical average calibration is that it is simple and easy to use, does not require additional training data and computational costs, and is suitable for a variety of different regression problems.

2. Linear Regression Calibration

Linear regression calibration is a regression calibration technology based on a linear regression model. The principle is to map the predicted value of the neural network to the real target value by fitting a linear model. Specifically, linear regression calibration uses additional labeled data to train a linear regression model, taking the predicted value of the neural network as input and the true target value as the output to obtain a linear mapping function, thereby performing the prediction on the neural network's predicted value. calibration.

The advantage of linear regression calibration is that it can more accurately estimate the relationship between the predicted value and the target value, and is suitable for various regression problems. However, the fitting of linear regression models requires a large amount of labeled data and computational costs, and may not be effective for regression problems with nonlinear relationships.

In general, classification calibration and regression calibration are common calibration techniques in deep neural networks, which can improve the performance and reliability of the model. Classification calibration mainly adjusts the confidence of the classifier to make the prediction probability more accurate; regression calibration mainly makes the prediction results closer to the true target value by correcting the bias and variance of the predicted value. In practical applications, appropriate calibration methods need to be selected according to specific problems and combined with other techniques to optimize the performance of the model.

The above is the detailed content of Deep neural networks for classification calibration and regression calibration. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.