Labs Introduction
In daily life, OCR (Optical Character Recognition) technology is widely used in screenshot extraction and photo search. , this is a very important technology in the field of text recognition
Part 01, What is OCR
OCR (Optical Character Recognition) is a computer text recognition method that uses optical and computer technology to convert printed or handwritten text images into an accurate and readable text format for computers. Identify and apply. OCR recognition technology is increasingly widely used in various industries of modern life. It is the key technology to quickly input text content into the computer
Part 02, Principle of OCR technology
OCR technology is mainly divided into two schools: traditional OCR and deep learning OCR.
In the early days of the development of OCR technology, technicians used image processing techniques such as binarization, connected domain analysis and projection analysis, combined with statistical machine learning (such as Adaboost and SVM) to extract images We classify text content as traditional OCR. Its main feature is that it relies on complex data preprocessing operations to correct and reduce noise on the image. The importance of adaptability to complex scenes cannot be ignored. Adaptability is a critical capability in a changing environment. A person with good adaptability can adapt to new situations and requirements, adapt quickly to changes, and find solutions to problems. Adaptability is also one of the key factors for success in one's personal and professional life. Therefore, we should strive to cultivate and improve our adaptability to cope with a changing world with poor accuracy and response speed.
Thanks to the continuous development of AI technology, OCR technology based on end-to-end deep learning has gradually matured. The advantage of this method is that it does not need to explicitly introduce the text cutting link in the image pre-processing stage. It converts text recognition into a sequence learning problem and integrates text segmentation into deep learning, which is of great significance to the improvement of OCR technology and future development direction.
2.1 Traditional OCR recognition process
The traditional OCR technology processing flow chart is as follows:
Image preprocessing: The text image enters the preprocessing stage after being scanned by the device. Due to the existence of various text media Interfering factors, such as the smoothness and printing quality of the paper, the light and darkness of the screen, etc., will cause text distortion. Therefore, preprocessing methods such as brightness adjustment, image enhancement, and noise filtering are required for the image.
Text area positioning: For positioning and extraction of text areas, the methods mainly include connected domain detection and MSER detection.
Text image correction: Correct slanted text to ensure it is horizontal. Correction methods mainly include horizontal correction and perspective correction.
Line and row single character segmentation: Traditional text recognition is based on single character recognition. The segmentation method mainly uses connected domain contours and vertical Projection cutting.
Classifier character recognition: Use feature extraction algorithms such as HOG and Sift to extract vector information from characters, and use SVM algorithm and logistic regression , support vector machine, etc. for training.
Post-processing: Since the classification of the classifier may not be completely correct, or there may be errors in the character cutting process, it needs to be based on statistics A language model (such as a hidden Markov chain, HMM) or a language rule model designed by human extraction rules to perform semantic error correction on the text results.
2.2 Deep Learning OCR
Picture
The current mainstream deep learning OCR The algorithm models the two stages of text detection and text recognition separately.
Text detection can be divided into regression-based and segmentation-based methods. Regression methods include algorithms such as CTPN, Textbox, and EAST, which can detect directional text in images, but will be affected by irregularities in the text area. Segmentation methods such as the PSENet algorithm can handle text of various shapes and sizes, but closer text is prone to sticking problems. Different methods have their own advantages and disadvantages
The text recognition stage mainly uses two major technologies, CRNN and ATTENTION, to transform text recognition into a sequence learning problem. The two technologies are in their feature learning stage Both use the network structure of CNN RNN. The difference lies in the final output layer (translation layer), that is, how to convert the sequence feature information learned by the network into the final recognition result.
In addition, there is a latest end-to-end algorithm that directly integrates text detection and text recognition into a single network model for learning. For example, algorithms such as FOTS and Mask TextSpotter. Compared with independent text detection and text recognition methods, this algorithm has faster recognition speed but weaker relative accuracy
2.3 Scheme comparison
#Traditional identification |
Artificial intelligence deep learning recognition technology |
|
Underlying layer Algorithm |
Text detection and recognition are divided into multiple stages and sub-processes, using different algorithm combinations |
The goal of this model is to fuse the detection and recognition processes to achieve end-to-end |
##Stability
|
The overall stability of multiple stages is poor
|
After the end With end-to-end optimization, the stability of the system has been significantly improved
|
Identification Accuracy
|
Traditional scenarios with small samples have certain advantages when the accuracy is not high
|
The accuracy is higher, the deeper the degree of fusion, the accuracy gradually decreases
|
speed
| Slower recognition||
Scenario The importance of adaptability cannot be ignored. Adaptability is a critical capability in a changing environment. A person with good adaptability can adapt to new situations and requirements, adapt quickly to changes, and find solutions to problems. Adaptability is also one of the key factors for success in one's personal and professional life. Therefore, we should strive to cultivate and improve our adaptability to cope with the ever-changing world |
Weak, applicable standard printing format |
Strong, compatible with complex scenarios, dependent on model training |
Anti-interference ability |
Weak, higher requirements for input images |
##Strong, dependent on model training |
Part 03, Common OCR evaluation indicators
Recall rate: refers to the ratio of the number of characters correctly recognized by the OCR system to the actual number of characters. It is used to measure whether the system has missed recognizing some characters. The higher the value, the better the system's ability to cover characters.
Accuracy rate: refers to the ratio of the number of characters correctly recognized by the OCR system to the total number of characters recognized by the system. It is used to measure how many of the recognition results of the system are truly correct. The higher the value, the more reliable the recognition results of the system are.
F1 value: A comprehensive evaluation index of recall rate and precision rate. The F1 value is between 0 and 1. The higher the value, the better the system is between precision rate and recall rate. A better balance has been achieved.
Average Edit Distance (Average Edit Distance) is an indicator used to evaluate the degree of difference between OCR recognition results and real text
Part 04 , Application and Prospect
OCR, as one of the main branches in the field of text recognition, still has a broad research direction and development space in the future. . In terms of recognition accuracy, it is still urgent to study smarter image processing technology and more powerful deep learning models; it requires recognition to be more universal in covering multiple languages and fonts, and to enhance the ability to adapt to complex scenes; in real-time recognition In terms of technology, we are looking for more application points that are combined with virtual reality technology and augmented reality technology, such as AR translation, automatic error correction of text data, and data correction.
The above is the detailed content of Explore the principles and application scenarios of OCR recognition. For more information, please follow other related articles on the PHP Chinese website!

Generative AI, exemplified by chatbots like ChatGPT, offers project managers powerful tools to streamline workflows and ensure projects stay on schedule and within budget. However, effective use hinges on crafting the right prompts. Precise, detail

The challenge of defining Artificial General Intelligence (AGI) is significant. Claims of AGI progress often lack a clear benchmark, with definitions tailored to fit pre-determined research directions. This article explores a novel approach to defin

IBM Watsonx.data: Streamlining the Enterprise AI Data Stack IBM positions watsonx.data as a pivotal platform for enterprises aiming to accelerate the delivery of precise and scalable generative AI solutions. This is achieved by simplifying the compl

The rapid advancements in robotics, fueled by breakthroughs in AI and materials science, are poised to usher in a new era of humanoid robots. For years, industrial automation has been the primary focus, but the capabilities of robots are rapidly exp

The biggest update of Netflix interface in a decade: smarter, more personalized, embracing diverse content Netflix announced its largest revamp of its user interface in a decade, not only a new look, but also adds more information about each show, and introduces smarter AI search tools that can understand vague concepts such as "ambient" and more flexible structures to better demonstrate the company's interest in emerging video games, live events, sports events and other new types of content. To keep up with the trend, the new vertical video component on mobile will make it easier for fans to scroll through trailers and clips, watch the full show or share content with others. This reminds you of the infinite scrolling and very successful short video website Ti

The growing discussion of general intelligence (AGI) in artificial intelligence has prompted many to think about what happens when artificial intelligence surpasses human intelligence. Whether this moment is close or far away depends on who you ask, but I don’t think it’s the most important milestone we should focus on. Which earlier AI milestones will affect everyone? What milestones have been achieved? Here are three things I think have happened. Artificial intelligence surpasses human weaknesses In the 2022 movie "Social Dilemma", Tristan Harris of the Center for Humane Technology pointed out that artificial intelligence has surpassed human weaknesses. What does this mean? This means that artificial intelligence has been able to use humans

TransUnion's CTO, Ranganath Achanta, spearheaded a significant technological transformation since joining the company following its Neustar acquisition in late 2021. His leadership of over 7,000 associates across various departments has focused on u

Building trust is paramount for successful AI adoption in business. This is especially true given the human element within business processes. Employees, like anyone else, harbor concerns about AI and its implementation. Deloitte researchers are sc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

Zend Studio 13.0.1
Powerful PHP integrated development environment
