


How to use Celery, Redis and Django to implement asynchronous task processing
Introduction:
When developing web applications, we often encounter things that require a lot of time time to perform tasks, such as sending emails, generating PDF files, etc. If these tasks are executed in the main thread, the user will have to wait for the task execution to be completed before receiving a response, affecting the user experience. In order to improve performance, we can use asynchronous task processing to execute these time-consuming tasks in the background so that users can get responses quickly. This article will introduce how to use Celery, Redis and Django to implement asynchronous task processing, and give detailed code examples.
1. What is Celery, Redis and Django
- Celery is an asynchronous task processing library based on distributed message transmission. It can split tasks into multiple subtasks and distribute them Concurrent execution on different worker nodes. Celery supports multiple message transmission methods, such as RabbitMQ, Redis, etc.
- Redis is a high-performance key-value pair storage database that can be used to store intermediate results and status information of Celery tasks.
- Django is a high-level Python web framework for developing web applications.
2. Install and configure Celery, Redis and Django
-
Install Celery and Redis:
pip install celery pip install redis
-
Configuration Celery:
Add the following configuration in the settings.py file of the Django project:# Celery配置 CELERY_BROKER_URL = 'redis://localhost:6379/0' CELERY_RESULT_BACKEND = 'redis://localhost:6379/0' CELERY_ACCEPT_CONTENT = ['json'] CELERY_RESULT_SERIALIZER = 'json' CELERY_TASK_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Shanghai'
It is assumed that Redis is running locally and the port is 6379.
-
Create a Django application and asynchronous task:
Create an application in the Django project and define an asynchronous task.# 创建Django应用 python manage.py startapp myapp # 在myapp/tasks.py中定义异步任务 from celery import shared_task @shared_task def send_email_task(email): # 发送邮件的逻辑
4. Write Django views and test asynchronous tasks
-
Write Django views:
Write a view function in the views.py file of the Django application, use For receiving user requests and calling asynchronous tasks.from django.shortcuts import render from myapp.tasks import send_email_task def send_email(request): # 获取用户请求参数 email = request.GET.get('email') # 调用异步任务 send_email_task.delay(email) return render(request, 'send_email.html')
- Create a Django template:
Create a send_email.html template file in the templates directory of the Django application to display the results of sending emails. -
Start Celery worker:
Execute the following command in the command line to start Celery worker:celery -A your_django_project_name worker --loglevel=info
-
Test asynchronous tasks:
Start Django Develop the server, access the URL for sending emails, and pass the email parameters. Celery will put the task into the message queue and execute it in the background.http://localhost:8000/send_email?email=test@example.com
Summary:
Using Celery, Redis and Django can easily implement asynchronous task processing. By executing time-consuming tasks in the background, the performance and user experience of web applications can be greatly improved. In actual development, tasks can also be optimized and expanded according to specific needs, such as setting the priority and timeout of tasks, handling task execution failures, etc. I hope this article can help you understand and use Celery, Redis and Django to implement asynchronous task processing.
The above is the detailed content of How to implement asynchronous task processing using Celery, Redis and Django. For more information, please follow other related articles on the PHP Chinese website!

一、背景实际工作中会有一些耗时的异步任务需要使用定时调度,比如发送邮件,拉取数据,执行定时脚本通过celery实现调度主要思想是通过引入中间人redis,启动worker进行任务执行,celery-beat进行定时任务数据存储二、Celery动态添加定时任务的官方文档celery文档:https://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#beat-custom-schedulerscelery自定义调度类说明

Redis是现在最热门的key-value数据库,Redis的最大特点是key-value存储所带来的简单和高性能;相较于MongoDB和Redis,晚一年发布的ES可能知名度要低一些,ES的特点是搜索,ES是围绕搜索设计的。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于redis的一些优势和特点,Redis 是一个开源的使用ANSI C语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式存储数据库,下面一起来看一下,希望对大家有帮助。

什么是 celery这次我们来介绍一下 Python 的一个第三方模块 celery,那么 celery 是什么呢? celery 是一个灵活且可靠的,处理大量消息的分布式系统,可以在多个节点之间处理某个任务; celery 是一个专注于实时处理的任务队列,支持任务调度; celery 是开源的,有很多的使用者; celery 完全基于 Python 语言编写;所以 celery 本质上就是一个任务调度框架,类似于 Apache 的 airflow,当然 airflow 也是基于 Python

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis Cluster集群收缩主从节点的相关问题,包括了Cluster集群收缩概念、将6390主节点从集群中收缩、验证数据迁移过程是否导致数据异常等,希望对大家有帮助。

什么是celery这次我们来介绍一下Python的一个第三方模块celery,那么celery是什么呢?celery是一个灵活且可靠的,处理大量消息的分布式系统,可以在多个节点之间处理某个任务;celery是一个专注于实时处理的任务队列,支持任务调度;celery是开源的,有很多的使用者;celery完全基于Python语言编写;所以celery本质上就是一个任务调度框架,类似于Apache的airflow,当然airflow也是基于Python语言编写。不过有一点需要注意,celery是用来调

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于原子操作中命令原子性的相关问题,包括了处理并发的方案、编程模型、多IO线程以及单命令的相关内容,下面一起看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了bitmap问题,Redis 为我们提供了位图这一数据结构,位图数据结构其实并不是一个全新的玩意,我们可以简单的认为就是个数组,只是里面的内容只能为0或1而已,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
