search
HomeBackend DevelopmentPython TutorialHow to write a depth-first search algorithm in Python?

How to write a depth-first search algorithm in Python?

How to write a depth-first search algorithm in Python?

Depth-First Search (DFS) is a commonly used graph traversal algorithm. In depth-first search, starting from the starting node, adjacent nodes are continuously explored until no more exploration is possible, and then it falls back to the previous node and continues to traverse unexplored adjacent nodes until all nodes are visited.

The following is an example of a depth-first search algorithm written in Python:

# 定义图的类
class Graph:
    def __init__(self, vertices):
        self.V = vertices  # 节点数量
        self.adj = [[] for _ in range(self.V)]  # 存储节点的邻接节点
        
    # 添加边
    def add_edge(self, u, v):
        self.adj[u].append(v)
        
    # DFS递归函数
    def dfs_util(self, u, visited):
        visited[u] = True  # 标记当前节点为已访问
        
        print(u, end=' ')  # 输出当前节点
        
        # 遍历当前节点的所有邻接节点
        for i in self.adj[u]:
            if not visited[i]:
                self.dfs_util(i, visited)
            
    # 对外接口,执行DFS
    def dfs(self, u):
        visited = [False] * self.V  # 标记所有节点均未访问
        
        self.dfs_util(u, visited)
        

# 测试代码
if __name__ == '__main__':
    # 创建一个具有4个节点的图
    g = Graph(4)
    
    # 添加图的边
    g.add_edge(0, 1)
    g.add_edge(0, 2)
    g.add_edge(1, 2)
    g.add_edge(2, 0)
    g.add_edge(2, 3)
    g.add_edge(3, 3)
    
    print("深度优先遍历结果:")
    g.dfs(2)

The above code implements a Graph class to represent the structure of the graph, which includes the initial number of nodes and the definition of adjacent nodes . Then the function to add edges add_edge is defined.

DFS algorithm is performed with the assistance of dfs_util recursive function. The function accepts two parameters: the current node u and an array visited, using To mark whether the node has been visited. The algorithm first marks the current node as visited and outputs the value of the node. Then traverse all adjacent nodes of the current node. If the adjacent nodes have not been visited, the dfs_util function is called recursively.

Finally, the dfs function serves as the external interface, accepts the starting node as a parameter, and creates a visited array initialized to False. Call the dfs_util function to start DFS traversal.

In the test code, we create a graph with 4 nodes and add some edges. Then use starting node 2 to perform DFS traversal and output the results.

Hope this code example helps you understand how to write a depth-first search algorithm in Python. You can also modify and optimize the code according to your own needs.

The above is the detailed content of How to write a depth-first search algorithm in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

How does the homogenous nature of arrays affect performance?How does the homogenous nature of arrays affect performance?Apr 25, 2025 am 12:13 AM

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

What are some best practices for writing executable Python scripts?What are some best practices for writing executable Python scripts?Apr 25, 2025 am 12:11 AM

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

How do NumPy arrays differ from the arrays created using the array module?How do NumPy arrays differ from the arrays created using the array module?Apr 24, 2025 pm 03:53 PM

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

How does the use of NumPy arrays compare to using the array module arrays in Python?How does the use of NumPy arrays compare to using the array module arrays in Python?Apr 24, 2025 pm 03:49 PM

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

How does the ctypes module relate to arrays in Python?How does the ctypes module relate to arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)