search
HomeBackend DevelopmentC++C++ program to remove nodes that do not satisfy path and are greater than or equal to k

C++ program to remove nodes that do not satisfy path and are greater than or equal to k

Sep 14, 2023 am 11:25 AM
path andRemove nodeGreater than or equal to k

C++ program to remove nodes that do not satisfy path and are greater than or equal to k

In this problem, we have a binary tree whose path from root node to leaf node is fully defined. The sum of all nodes from the root node to the leaf nodes must be greater than or equal to the constant value k. Therefore, we need to remove all nodes in those paths whose sum is less than k, so that the remaining paths in the tree will be greater than k. The important thing to remember here is that a node may be part of many paths, so such nodes are only removed if the sum of all paths leading to that node

From the root node to the leaf node, we can calculate the sum. When the recursive call to the node completes and control returns, we can check if the sum of the left and right paths

Suppose we have 150 K and a tree like this -

                  10
                  /\
                 20 30
                /\   /\
              5  35 40 45
                 /\     /\
               50  55 60  65
                   /\  /  /
                 70 80 90 100

If we see that the sum of the path root->left->left is 10 20 5, which is 25, less than 150, we need to prune it and remove 5. After that, let's evaluate 10->30->40. It is less than 150, so 40 is deleted.

Now we see another path 10->20->35->50, the sum of 115 is less than 150, so we delete 50. Now our remaining path is

10->20->35->55->70 ;
10->20->35->55->80 ;
10->30->45->60->90 ;
10->30->45->65->100 ;

The sum of all paths is greater than 150, so we don't need to prune anymore.

Example

The following is a C program that demonstrates how to delete nodes that are not in any path and whose sum is greater than or equal to any constant value k -

#include <iostream>
using namespace std;
class Node {
   public:
   int value;
   Node *left, *right;
   Node(int value) {
      this->value = value;
      left = right = NULL;
   }
};
Node* removeNodesWithPathSumLessThanK(Node* root, int k, int& sum) {
   if(root == NULL) return NULL;
   int leftSum, rightSum;
   leftSum = rightSum = sum + root->value;
   root->left = removeNodesWithPathSumLessThanK(root->left, k, leftSum);
   root->right = removeNodesWithPathSumLessThanK(root->right, k, rightSum);
   sum = max(leftSum, rightSum);
   if(sum < k) {
      free(root);
      root = NULL;
   }
   return root;
}
void printInorderTree(Node* root) {
   if(root) {
      printInorderTree(root->left);
      cout << root->value << " ";
      printInorderTree(root->right);
   }
}
int main() {
   int k = 150;
   Node* root = new Node(10);
   root->left = new Node(20);
   root->right = new Node(30);
   root->left->left = new Node(5);
   root->left->right = new Node(35);
   root->right->left = new Node(40);
   root->right->right = new Node(45);
   root->left->right->left = new Node(50);
   root->left->right->right = new Node(55);
   root->right->right->left = new Node(60);
   root->right->right->right = new Node(65);
   root->left->right->right->left = new Node(70);
   root->left->right->right->right = new Node(80);
   root->right->right->left->left = new Node(90);
   root->right->right->right->left = new Node(100);
   int sum = 0;
   cout << "Inorder tree before: ";
   printInorderTree(root);
   root = removeNodesWithPathSumLessThanK(root, k, sum);
   cout << "\nInorder tree after: ";
   printInorderTree(root);
   return 0;
}

Output

Inorder tree before: 5 20 50 35 70 55 80 10 40 30 90 60 45 100 65 
Inorder tree after: 20 35 70 55 80 10 30 90 60 45 100 65 

Our fully pruned tree -

                  10
                  / \
                 20  30
                 \     \
                 35     45
                  \     /\
                  55   60 65
                  /\    /  /
                 70 80 90 100

in conclusion

As we can see, after the initial observation, we can apply DFS and remove nodes by calculating the sum of that node as the recursive function returns from each call. Overall, this is a simple matter of observation and methodology.

The above is the detailed content of C++ program to remove nodes that do not satisfy path and are greater than or equal to k. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
C  : Is It Dying or Simply Evolving?C : Is It Dying or Simply Evolving?Apr 24, 2025 am 12:13 AM

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen

C   in the Modern World: Applications and IndustriesC in the Modern World: Applications and IndustriesApr 23, 2025 am 12:10 AM

C is widely used and important in the modern world. 1) In game development, C is widely used for its high performance and polymorphism, such as UnrealEngine and Unity. 2) In financial trading systems, C's low latency and high throughput make it the first choice, suitable for high-frequency trading and real-time data analysis.

C   XML Libraries: Comparing and Contrasting OptionsC XML Libraries: Comparing and Contrasting OptionsApr 22, 2025 am 12:05 AM

There are four commonly used XML libraries in C: TinyXML-2, PugiXML, Xerces-C, and RapidXML. 1.TinyXML-2 is suitable for environments with limited resources, lightweight but limited functions. 2. PugiXML is fast and supports XPath query, suitable for complex XML structures. 3.Xerces-C is powerful, supports DOM and SAX resolution, and is suitable for complex processing. 4. RapidXML focuses on performance and parses extremely fast, but does not support XPath queries.

C   and XML: Exploring the Relationship and SupportC and XML: Exploring the Relationship and SupportApr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C# vs. C  : Understanding the Key Differences and SimilaritiesC# vs. C : Understanding the Key Differences and SimilaritiesApr 20, 2025 am 12:03 AM

The main differences between C# and C are syntax, performance and application scenarios. 1) The C# syntax is more concise, supports garbage collection, and is suitable for .NET framework development. 2) C has higher performance and requires manual memory management, which is often used in system programming and game development.

C# vs. C  : History, Evolution, and Future ProspectsC# vs. C : History, Evolution, and Future ProspectsApr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C# vs. C  : Learning Curves and Developer ExperienceC# vs. C : Learning Curves and Developer ExperienceApr 18, 2025 am 12:13 AM

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C# vs. C  : Object-Oriented Programming and FeaturesC# vs. C : Object-Oriented Programming and FeaturesApr 17, 2025 am 12:02 AM

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.