


In this tutorial, we need to construct a binary string of length K. If the sum of subsets equal to I can be achieved using array elements, then its i-th index Should contain "1". We will learn two ways to solve the problem. In the first approach, we will use dynamic programming methods to check if it is possible that the sum of subsets is equal to index "I". In the second method, we will use bitset to find all possible sums through array elements.
Problem Statement - We are given an array containing N integers. Additionally, we are given an integer M representing the length of the binary string. We need to create a binary string of length M such that it obeys the following conditions.
The character at index "I" is 1 if we can find a subset from the array whose sum equals index "I"; otherwise it is 0.
My index starts from 1.
ExampleExample
Input – arr = [1, 2] M = 4
Output – 1110
illustrate
The subset whose sum equals 1 is {1}.
The subset whose sum equals 2 is {2}.
The subset whose sum equals 3 is {1, 2}.
We can't find a subset that sums to 4, so we put 0 at the 4th index.
Input – arr = [1, 3, 1] M = 9
Output – 111110000
illustrate
We can create all possible combinations so that the sum is between 1 and 5. So, the first 5 characters are 1 and the last 4 characters are 0.
Input – arr = [2, 6, 3] M = 6
Output – 011011
illustrate
We cannot get a sum equal to 1 and 4 using array elements, so we place 0 at the first and fourth index positions.
method 1
In this method we will use dynamic programming to check if we can construct a sum equal to index 'I' using array elements. We will check it for each index and append 1 or 0 to a binary string.
algorithm
Step 1 - Create a vector of size N and initialize it with an integer value. Also, define a "bin" variable of type string and initialize it with an empty string.
Step 2 - Use a for loop to make the total number of iterations equal to the string length.
Step 3 - In the for loop, call the isSubsetSum() function by passing the array N and the index value as parameters.
Step 4 - If the isSubsetSum() function returns true, append "1" to "bin". Otherwise, append "0" to "bin".
Step 5 - Define isSubsetSum() function to check if summing can be done using array elements.
Step 5.1 - Define a two-dimensional vector named dpTable.
Step 5.2 - Initialize 'dpTable[i][0]' to true since a sum of zero is always possible. Here, 'I' is the index value.
Step 5.3 - Initialize 'dpTable[0][j]' to false since the sum of empty arrays is not possible.
Step 5.4 - Now, use two nested loops. The first loop iterates from 1 to N and the other loop iterates from 1 to sum.
Step 5.5 - In the for loop, if the value of the current element is greater than the sum, ignore it.
Step 5.6 − Otherwise, include or exclude elements to get the sum.
Step 5.7 − Return ‘dpTable[N][sum]’ containing the result.
Example
#include <iostream> #include <vector> using namespace std; // Function to check if subset-sum is possible bool isSubsetSum(vector<int> &arr, int N, int sum){ vector<vector<bool>> dpTable(N + 1, vector<bool>(sum + 1, false)); // Base cases for (int i = 0; i <= N; i++) // If the sum is zero, then the answer is true dpTable[i][0] = true; // for an empty array, the sum is not possible for (int j = 1; j <= sum; j++) dpTable[0][j] = false; // Fill the dp table for (int i = 1; i <= N; i++){ for (int j = 1; j <= sum; j++){ // if the current element is greater than the sum, then we can't include it if (arr[i - 1] > j) dpTable[i][j] = dpTable[i - 1][j]; // else we can either include it or exclude it to get the sum else dpTable[i][j] = dpTable[i - 1][j] || dpTable[i - 1][j - arr[i - 1]]; } } // The last cell of the dp table contains the result return dpTable[N][sum]; } int main(){ // Given M int M = 9; // Creating the vector vector<int> arr = {1, 3, 1}; // getting the size of the vector int N = arr.size(); // Initializing the string string bin = ""; // Making k iteration to construct the string of length k for (int i = 1; i <= M; i++){ // if the subset sum is possible, then add 1 to the string, else add 0 if (isSubsetSum(arr, N, i)){ bin += "1"; } else{ bin += "0"; } } // print the result. cout << "The constructed binary string of length " << M << " according to the given conditions is "; cout << bin; return 0; }
Output
The constructed binary string of length 9 according to the given conditions is 111110000
Time complexity - O(N^3), because the time complexity of isSubsetSum() is O(N^2) and we call it N times in the driver code.
Space complexity - O(N^2), because we use a two-dimensional vector in the isSubsetSum() function.
How to use Bitset
In this method we will use bitsets to find all possible sum values by combining different elements of the array. Here, bitset means it creates a binary string. In the resulting bit set, each bit of it represents whether the sum is likely to be equal to a specific index, and we need to find it here.
algorithm
Step 1 - Define the array and M. Additionally, define the createBinaryString() function.
Step 2 - Next, define the set of bits of the desired length, which will create a binary string.
Step 3 - Initialize bit[0] to 1, since a sum of 0 is always possible.
Step 4 - Use a for loop to iterate over the array elements
.
Step 5 - First, perform a "bit" left shift operation on the array elements. The resulting value is then ORed with the bit value.
Step 6 − Print the value of the bit set from index 1 to M.
Example
#include <bits/stdc++.h> using namespace std; // function to construct the binary string void createBinaryString(int array[], int N, int M){ bitset<100003> bit; // Initialize with 1 bit[0] = 1; // iterate over all the integers for (int i = 0; i < N; i++){ // perform left shift by array[i], and OR with the previous value. bit = bit | bit << array[i]; } // Print the binary string cout << "The constructed binary string of length " << M << " according to the given conditions is "; for (int i = 1; i <= M; i++){ cout << bit[i]; } } int main(){ // array of integers int array[] = {1, 4, 2}; int N = sizeof(array) / sizeof(array[0]); // value of M, size of the string int M = 8; createBinaryString(array, N, M); }
Output
The constructed binary string of length 8 according to the given conditions is 11111110
Time complexity - O(N) since we use a single for loop.
Space complexity - O(N), because we store the value of the bit set.
in conclusion
Here, we optimized the second method, which is better than the first method in terms of space and time complexity. However, the second method may be difficult for beginners to understand if you don't have an understanding of bit sets.
The above is the detailed content of Construct a binary string of length K from the array according to the given conditions. For more information, please follow other related articles on the PHP Chinese website!

二进制算法是一种基于二进制数的运算方法,其基本运算包括加法、减法、乘法和除法。除了基本运算外,二进制算法还包括逻辑运算、位移运算等操作。逻辑运算包括与、或、非等操作,位移运算包括左移和右移操作。这些操作都有对应的规则和操作数的要求。

二进制数以1和0表示。16位的十六进制数系统为{0,1,2,3…..9,A(10),B(11),……F(15)}为了从二进制表示转换为十六进制表示,位串id被分组为4位块,从最低有效侧开始称为半字节。每个块都替换为相应的十六进制数字。让我们看一个示例,以清楚地了解十六进制和二进制数字表示。001111100101101100011101 3 E 5 B&nb

EDVAC的两个重大的改进:一是采用二进制,二是完成了存贮程序,可以自动地从一个程序指令进到下一个程序指令,其作业可以通过指令自动完成。“指令”包括数据和程序,把它们用码的形式输入到机器的记忆装置中,即用记忆数据的同一记忆装置存贮执行运算的命令,这就是所谓存贮程序的新概念。

Golang如何读取二进制文件?二进制文件是以二进制形式存储的文件,其中包含了计算机能够识别和处理的数据。在Golang中,我们可以使用一些方法来读取二进制文件,并将其解析成我们想要的数据格式。下面将介绍如何在Golang中读取二进制文件,并给出具体的代码示例。首先,我们需要使用os包中的Open函数打开一个二进制文件,这将返回一个文件对象。然后,我们可以使

题目:轻松学会Go语言中16进制转二进制,需要具体代码示例在计算机编程中,经常会涉及到对不同进制数之间的转换操作。其中,16进制和二进制之间的转换是比较常见的。在Go语言中,我们可以通过一些简单的代码示例来实现16进制到二进制的转换,让我们一起来学习一下。首先,我们来了解一下16进制和二进制的表示方法。16进制是一种表示数字的方法,使用0-9和A-F来表示1

Golang能否处理二进制文件?在Go语言中,处理二进制文件是非常常见且方便的。通过使用内置的包和方法,我们可以轻松地读取、写入和操作二进制文件。本文将介绍如何在Go中处理二进制文件,并提供具体的代码示例。读取二进制文件要读取一个二进制文件,我们首先需要打开这个文件并创建一个对应的文件对象。然后,我们可以使用Read方法从文件中读取数据,并以字节的形式存储在

计算机采用二进制的主要原因:1、计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示;2、二进制中只使用0和1两个数字,传输和处理时不易出错,因而可以保障计算机具有很高的可靠性。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
