search
HomeBackend DevelopmentPython TutorialHyperlink-Induced Topic Search (HITS) algorithm using Networxx module - Python

使用Networxx模块的超链接诱导主题搜索(HITS)算法- Python

The Hyperlink Induced Topic Search (HITS) algorithm is a popular algorithm used for web link analysis, especially in search engine ranking and information retrieval. HITS identifies authoritative web pages by analyzing the links between web pages. In this article, we will explore how to implement the HITS algorithm using the Networxx module in Python. We will provide a step-by-step guide on how to install the Networxx module and explain its usage with practical examples.

Understand the HITS algorithm

The HITS algorithm is based on the idea that authoritative web pages are often linked to by other authoritative web pages. It works by assigning two scores to each web page: an authority score and a centrality score. The authority score measures the quality and relevance of the information a page provides, while the centrality score represents a page's ability to link to other authoritative pages.

The HITS algorithm iteratively updates the authority score and center score until convergence is achieved. Start by assigning all web pages an initial authority score of 1. It then calculates each page's centrality score based on the authority scores of the pages it links to. It then updates the authority score based on the centrality score of the page linking to it. Repeat this process until the score stabilizes.

Install Networkx module

To use the Networxx module to implement the HITS algorithm in Python, we first need to install the module. Networxx is a powerful library that provides high-level interfaces for network analysis tasks. To install Networxx, open a terminal or command prompt and run the following command:

Pip install networkx

Use Networxx to implement HITS algorithm

After installing the networkorxx module in Python, we can now use this module to implement the HITS algorithm. The step-by-step implementation is as follows:

Step 1: Import the required modules

Import all necessary modules that can be used in Python scripts to implement the HITS algorithm.

import networkx as nx

Step 2: Create the shape and add edges

We use the DiGraph() class in the networkx module to create an empty directed graph. The DiGraph() class represents a directed graph, where edges have specific directions indicating flow or relationships between nodes. Then add edges to the graph G using the add_edges_from() method. The add_edges_from() method allows us to add multiple edges to the graph at once. Each edge is represented as a tuple containing a source node and a destination node.

In the code example below, we have added the following edges:

  • Edge from node 1 to node 2

  • Edge from node 1 to node 3

  • Edge from node 2 to node 4

  • Edge from node 3 to node 4

  • Edge from node 4 to node 5

Node 1 has outgoing edges to nodes 2 and 3. Node 2 has an outgoing edge to node 4, and node 3 also has an outgoing edge to node 4. Node 4 has outgoing edges to node 5. This structure captures the link relationships between web pages in the graph.

This graph structure is then used as input to the HITS algorithm to calculate authority and centrality scores, which measure the importance and relevance of web pages in the graph.

G = nx.DiGraph()
G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])

Step 3: Calculate HITS Score

We use the hits() function provided by the networkx module to calculate the authority and hub score of graph G. The hits() function takes the graph G as input and returns two dictionaries: authority_scores and hub_scores.

  • Authority_scores: This dictionary contains the authority score for each node in the graph. The authority score represents the importance or relevance of a web page within the context of the graph structure. The higher the authority score, the more authoritative or influential the page is.

  • Hub_scores: This dictionary contains the hub score for each node in the graph. Centrality score represents a page's ability to act as a hub, connecting to other authoritative pages. The higher the centrality score, the more effective the page is at linking to other authoritative pages.

authority_scores, hub_scores = nx.hits(G)

Step 4: Print the score

After executing the code in step 3, the authority_scores and hub_scores dictionaries will contain the calculated score for each node in the graph G. We can then print these scores.

print("Authority Scores:", authority_scores)
print("Hub Scores:", hub_scores)

The complete code to implement the HITS algorithm using the networkxx module is as follows:

Example

import networkx as nx

# Step 2: Create a graph and add edges
G = nx.DiGraph()
G.add_edges_from([(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)])

# Step 3: Calculate the HITS scores
authority_scores, hub_scores = nx.hits(G)

# Step 4: Print the scores
print("Authority Scores:", authority_scores)
print("Hub Scores:", hub_scores)

Output

Authority Scores: {1: 0.3968992926167327, 2: 0.30155035369163363, 3: 0.30155035369163363, 4: 2.2867437232950395e-17, 5: 0.0}
Hub Scores: {1: 0.0, 2: 0.28412878058893093, 3: 0.28412878058893115, 4: 0.4317424388221378, 5: 3.274028035351656e-17}

in conclusion

In this article, we discussed how to implement the HITS algorithm using Python’s Networkx module. The HITS algorithm is an important tool for web link analysis. Using the Networxx module in Python, we can efficiently implement the algorithm and effectively analyze the web link structure. Networxx provides a user-friendly interface for network analysis, making it easier for researchers and developers to leverage the power of the HITS algorithm in their projects.

The above is the detailed content of Hyperlink-Induced Topic Search (HITS) algorithm using Networxx module - Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function