search
HomeBackend DevelopmentPython TutorialHow to use GIL to solve Python multi-threaded performance bottlenecks

How to use GIL to solve Python multi-threaded performance bottlenecks

Aug 02, 2023 pm 02:41 PM
Multithreadingperformancegil

How to use GIL to solve Python multi-threaded performance bottlenecks

Introduction:
Python is a widely used programming language, but it has a performance bottleneck in multi-threading, that is, the global interpreter lock ( Global Interpreter Lock (GIL for short). The GIL limits Python's multi-threaded parallelism capabilities because it only allows one thread to execute Python bytecode at a time. This article will introduce how GIL works and provide some methods of using GIL to solve Python multi-threaded performance bottlenecks.

1. How GIL works
GIL is a mechanism introduced to protect Python’s object memory model. In Python, each thread must obtain the GIL before executing Python bytecode, and then it can execute Python code. The advantage of this is that it can simplify the implementation of the interpreter and improve performance in some cases. However, this also limits the parallel performance of multi-threading.

2. Performance issues caused by GIL
Due to the existence of GIL, multiple threads cannot execute Python bytecode at the same time, which leads to performance issues in a multi-threaded environment. Specifically, when using multiple threads to perform CPU-intensive tasks, only one thread is actually executing, and other threads are waiting for the release of the GIL. This results in multi-threading having no obvious performance advantage in CPU-intensive tasks.

3. Use multi-processes instead of multi-threads
Due to the existence of GIL, it is not wise to use multi-threads to improve the performance of Python programs. Using multiple processes is a better choice, because multiple processes can make full use of the computing power of multi-core CPUs. The following is a sample code using multiple processes:

import multiprocessing

def square(x):
    return x ** 2

if __name__ == '__main__':
    inputs = [1, 2, 3, 4, 5]
    
    with multiprocessing.Pool(processes=4) as pool:
        results = pool.map(square, inputs)
    
    print(results)

In the above code, the multiprocessing module is used to create a process pool and use the map method to Execute the square function in parallel in multiple processes. In this way, we can make full use of the computing power of multi-core CPUs, thereby improving program execution efficiency.

4. Use C extensions to bypass GIL
Another way to solve the GIL performance bottleneck is to use C extensions to bypass the GIL. The specific method is to write some performance-sensitive tasks in C language and perform these tasks by using C extensions. Here is a sample code using C extension:

from ctypes import pythonapi, Py_DecRef

def square(x):
    Py_DecRef(pythonapi.PyInt_FromLong(x))
    return x ** 2

if __name__ == '__main__':
    inputs = [1, 2, 3, 4, 5]
    
    with multiprocessing.Pool(processes=4) as pool:
        results = pool.map(square, inputs)
    
    print(results)

In the above code, the PyInt_FromLong function written in C language is called by using the ctypes module and manually Release the GIL. This way, we can bypass the limitations of the GIL and get better performance in performance-sensitive tasks.

Conclusion:
GIL is a major cause of Python's multi-threading performance bottleneck, limiting the performance of multi-threading in CPU-intensive tasks. However, we can improve the performance of our program by using multiple processes, and we can use C extensions to bypass the limitations of the GIL. In practical applications, we should choose the appropriate solution according to the specific situation to obtain the best performance.

Total: 829 words

The above is the detailed content of How to use GIL to solve Python multi-threaded performance bottlenecks. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

How does the homogenous nature of arrays affect performance?How does the homogenous nature of arrays affect performance?Apr 25, 2025 am 12:13 AM

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

What are some best practices for writing executable Python scripts?What are some best practices for writing executable Python scripts?Apr 25, 2025 am 12:11 AM

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

How do NumPy arrays differ from the arrays created using the array module?How do NumPy arrays differ from the arrays created using the array module?Apr 24, 2025 pm 03:53 PM

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

How does the use of NumPy arrays compare to using the array module arrays in Python?How does the use of NumPy arrays compare to using the array module arrays in Python?Apr 24, 2025 pm 03:49 PM

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

How does the ctypes module relate to arrays in Python?How does the ctypes module relate to arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Atom editor mac version download

Atom editor mac version download

The most popular open source editor