Stratified Sampling Techniques in Python
Sampling is a commonly used data collection method in statistics. It can select a portion of samples from the data set for analysis to infer the characteristics of the entire data set. In the era of big data, the amount of data is huge, and using full samples for analysis is both time-consuming and not economically practical. Therefore, choosing an appropriate sampling method can improve the efficiency of data analysis. This article mainly introduces stratified sampling techniques in Python.
What is stratified sampling?
In sampling, stratified sampling is a commonly used technique. Different from simple random sampling, stratified sampling divides the data into several layers within the population, and each layer has the same attribute characteristics. Then, samples are obtained from each stratum according to different probabilities. This method is suitable when there are special characteristics in the population, especially when these characteristics are obvious. Stratified sampling is a more effective statistical sampling method.
Why is stratified sampling needed?
The advantage of stratified sampling is that it can improve sampling accuracy and reduce sampling errors, thereby building better models and inferences. In the actual scenario of data analysis, there are different types of variables in the population. Improper processing of these variables will cause deviations or errors, making the established model unable to approach the real situation. Using stratified sampling technology, the samples collected can be controlled so that samples composed of different variables can more accurately reflect the true situation of the population.
How to perform stratified sampling in Python?
In Python, there are a variety of packages that can implement stratified sampling, the more famous of which are the numpy and pandas libraries. Both libraries provide many useful functions that can help us implement stratified sampling techniques.
Below we use an example to demonstrate how to use Python to implement stratified sampling.
In this example, we assume that there is an experimental data set with 5 variables, including gender, age, height, weight and whether to smoke. This data set lends itself well to stratified sampling techniques.
First, we need to divide the dataset into different layers. We selected gender as the stratification variable and divided men and women into two strata.
import pandas as pd # 生成测试数据 data = pd.DataFrame({ 'sex': ['M', 'M', 'M', 'F', 'F', 'F'], 'age': [18, 20, 22, 25, 27, 30], 'height': [170, 172, 175, 160, 165, 170], 'weight': [65, 70, 75, 55, 60, 65], 'smoke': [1, 1, 0, 0, 1, 0] }) # 分层抽样 male = data[data['sex'] == 'M'] female = data[data['sex'] == 'F']
Next, we need to determine the sample size for each level and the corresponding sampling proportion. In this example, we assume that 10% of the sample is taken from women and 20% is taken from men.
# 分层抽样比例 sampling_prop = { 'M': 0.2, 'F': 0.1 } # 计算每个层级的样本大小 m_size = int(len(male) * sampling_prop['M']) f_size = int(len(female) * sampling_prop['F'])
Finally, we can use the random.choice function in the numpy library to extract samples from each level. In this example, we extract samples of the required stratum from each stratum:
import numpy as np # 分层抽样 msample = male.sample(m_size) fsample = female.sample(f_size) # 整合分层样本 sample = pd.concat([msample, fsample])
The results of stratified sampling will be relatively more accurate, and the model established with the full sample will be more easily widely used. In practice, applying stratified sampling techniques can improve the efficiency and accuracy of data research, leading to more accurate conclusions.
The above is the detailed content of Stratified sampling techniques in Python. For more information, please follow other related articles on the PHP Chinese website!

Python 中有许多方法可以帮助我们理解代码的内部工作原理,良好的编程习惯,可以使我们的工作事半功倍!例如,我们最终可能会得到看起来很像下图中的代码。虽然不是最糟糕的,但是,我们需要扩展一些事情,例如:load_las_file 函数中的 f 和 d 代表什么?为什么我们要在 clay 函数中检查结果?这些函数需要什么类型?Floats? DataFrames?在本文中,我们将着重讨论如何通过文档、提示输入和正确的变量名称来提高应用程序/脚本的可读性的五个基本技巧。1. Comments我们可

随着直播业务的火爆,越来越多的网站和应用开始加入直播这项功能。PHP作为一种流行的服务器端语言,也可以用来开发高效的直播功能。当然,要实现一个稳定、高效的直播功能需要考虑很多问题。下面列出了使用PHP开发直播功能的十个技巧,帮助你更好地实现直播。选择合适的流媒体服务器PHP开发直播功能,首先需要考虑的就是流媒体服务器的选择。有很多流媒体服务器可以选择,比如常

译者 | 赵青窕审校 | 孙淑娟你是否经常回头看看6个月前写的代码,想知道这段代码底是怎么回事?或者从别人手上接手项目,并且不知道从哪里开始?这样的情况对开发者来说是比较常见的。Python中有许多方法可以帮助我们理解代码的内部工作方式,因此当您从头来看代码或者写代码时,应该会更容易地从停止的地方继续下去。在此我给大家举个例子,我们可能会得到如下图所示的代码。这还不是最糟糕的,但有一些事情需要我们去确认,例如:在load_las_file函数中f和d代表什么?为什么我们要在clay函数中检查结果

PHP中的多表关联查询技巧关联查询是数据库查询的重要部分,特别是当你需要展示多个相关数据库表内的数据时。在PHP应用程序中,在使用MySQL等数据库时,多表关联查询经常会用到。多表关联的含义是,将一个表中的数据与另一个或多个表中的数据进行比较,在结果中将那些满足要求的行连接起来。在进行多表关联查询时,需要考虑表之间的关系,并使用合适的关联方法。下面介绍几种多

1.简介我们在日常使用Python进行各种数据计算处理任务时,若想要获得明显的计算加速效果,最简单明了的方式就是想办法将默认运行在单个进程上的任务,扩展到使用多进程或多线程的方式执行。而对于我们这些从事数据分析工作的人员而言,以最简单的方式实现等价的加速运算的效果尤为重要,从而避免将时间过多花费在编写程序上。而今天的文章费老师我就来带大家学习如何利用joblib这个非常简单易用的库中的相关功能,来快速实现并行计算加速效果。2.使用joblib进行并行计算作为一个被广泛使用的第三方Python库(

对于数据科学,Python通常被广泛地用于进行数据的处理和转换,它提供了强大的数据结构处理的函数,使数据处理更加灵活,这里说的“灵活性”是什么意思?这意味着在Python中总是有多种方法来实现相同的结果,我们总是有不同的方法并且需要从中选择易于使用、省时并能更好控制的方法。要掌握所有的这些方法是不可能的。所以这里列出了在处理任何类型的数据时应该知道的4个Python技巧。列表推导式ListComprehension是创建列表的一种优雅且最符合python语言的方法。与for循环和if语句相比,列

近年来,随着网络信息的急剧增长,网络爬虫技术在互联网行业中扮演着越来越重要的角色。其中,Go语言的出现为网络爬虫的开发带来了诸多优势,如高速度、高并发、低内存占用等。本文将介绍一些Go语言中的网络爬虫开发技巧,帮助开发者更快更好地进行网络爬虫项目开发。一、如何选择合适的HTTP客户端在Go语言中,有多种HTTP请求库可供选择,如net/http、GoRequ

整理字符串输入整理用户输入的问题在编程过程中极为常见。通常情况下,将字符转换为小写或大写就够了,有时你可以使用正则表达式模块「Regex」完成这项工作。但是如果问题很复杂,可能有更好的方法来解决:user_input="Thisnstringhastsomewhitespaces...rn"character_map={ord('n'):'',ord('t'):'',ord('r'):None}user_input.translate(charact


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
