1. What is a distributed lock?
Distributed locks are visible to multiple processes in a distributed system or cluster mode and Mutually exclusive lock.
Implementing distributed locks based on Redis:
1. Acquiring locks
-
Mutual exclusion: ensure that only one thread can acquire the lock;
Non-blocking: Try to acquire the lock, return true if successful, false if failed;
Add lock expiration time to avoid deadlock caused by service downtime.
SET lock thread1 NX EX 10
2. Release lock
Manual release;
DEL key1
Timeout release, add a timeout lock when acquiring the lock;
2. Code example
package com.guor.utils; import org.springframework.data.redis.core.StringRedisTemplate; import java.util.concurrent.TimeUnit; public class RedisLock implements ILock{ private String name; private StringRedisTemplate stringRedisTemplate; public RedisLock(String name, StringRedisTemplate stringRedisTemplate) { this.name = name; this.stringRedisTemplate = stringRedisTemplate; } private static final String KEY_PREFIX = "lock:"; @Override public boolean tryLock(long timeout) { // 获取线程唯一标识 long threadId = Thread.currentThread().getId(); // 获取锁 Boolean success = stringRedisTemplate.opsForValue() .setIfAbsent(KEY_PREFIX + name, threadId+"", timeout, TimeUnit.SECONDS); // 防止拆箱的空指针异常 return Boolean.TRUE.equals(success); } @Override public void unlock() { stringRedisTemplate.delete(KEY_PREFIX + name); } }
The above code exists Problem of accidental lock deletion:
If thread 1 acquires the lock, but thread 1 is blocked, causing Redis to timeout and release the lock;
At this time , Thread 2 tries to acquire the lock, succeeds, and executes the business;
At this time, Thread 1 restarts the task and completes the execution, then releases the lock (that is, deletes the lock);
However, the lock deleted by thread 1 is the same lock as the lock of thread 2. This is the
distributed lock accidental deletion problem
;
When releasing the lock, releasing the thread's own distributed lock can solve this problem.
package com.guor.utils; import cn.hutool.core.lang.UUID; import org.springframework.data.redis.core.StringRedisTemplate; import java.util.concurrent.TimeUnit; public class RedisLock implements ILock{ private String name; private StringRedisTemplate stringRedisTemplate; public RedisLock(String name, StringRedisTemplate stringRedisTemplate) { this.name = name; this.stringRedisTemplate = stringRedisTemplate; } private static final String KEY_PREFIX = "lock:"; private static final String UUID_PREFIX = UUID.randomUUID().toString(true) + "-"; @Override public boolean tryLock(long timeout) { // 获取线程唯一标识 String threadId = UUID_PREFIX + Thread.currentThread().getId(); // 获取锁 Boolean success = stringRedisTemplate.opsForValue() .setIfAbsent(KEY_PREFIX + name, threadId, timeout, TimeUnit.SECONDS); // 防止拆箱的空指针异常 return Boolean.TRUE.equals(success); } @Override public void unlock() { // 获取线程唯一标识 String threadId = UUID_PREFIX + Thread.currentThread().getId(); // 获取锁中的标识 String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name); // 判断标示是否一致 if(threadId.equals(id)) { // 释放锁 stringRedisTemplate.delete(KEY_PREFIX + name); } } }
3. The distributed lock implemented based on SETNX
has the following problems
1. No reentrancy
The same thread cannot be used multiple times Get the same lock.
2. No retry
You only try once to acquire the lock and return false. There is no retry mechanism.
3. Timeout release
Although timeout release of the lock can avoid deadlock, if the business execution takes a long time, it will also cause the lock to be released, posing security risks.
4. Master-slave consistency
If Redis is deployed in a cluster, there will be a delay in master-slave synchronization. When the host goes down, a slave will be selected as the host, but at this time There is never a lock identifier. At this time, other threads may acquire the lock, causing security issues.
4. Redisson implements distributed locks
Redisson is a Java memory data grid based on Redis implementation. In addition to providing commonly used distributed Java objects, it also provides many distributed services, including the implementation of various distributed locks.
1. pom
<!--redisson--> <dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.13.6</version> </dependency>
2. Configuration class
package com.guor.config; import org.redisson.Redisson; import org.redisson.api.RedissonClient; import org.redisson.config.Config; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; @Configuration public class RedissonConfig { @Bean public RedissonClient redissonClient(){ // 配置 Config config = new Config(); /** * 单点地址useSingleServer,集群地址useClusterServers */ config.useSingleServer().setAddress("redis://127.0.0.1:6379").setPassword("123456"); // 创建RedissonClient对象 return Redisson.create(config); } }
3. Test class
package com.guor; import lombok.extern.slf4j.Slf4j; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; import org.redisson.api.RLock; import org.redisson.api.RedissonClient; import org.springframework.boot.test.context.SpringBootTest; import javax.annotation.Resource; import java.util.concurrent.TimeUnit; @Slf4j @SpringBootTest class RedissonTest { @Resource private RedissonClient redissonClient; private RLock lock; @BeforeEach void setUp() { // 获取指定名称的锁 lock = redissonClient.getLock("nezha"); } @Test void test() throws InterruptedException { // 尝试获取锁 boolean isLock = lock.tryLock(1L, TimeUnit.SECONDS); if (!isLock) { log.error("获取锁失败"); return; } try { log.info("哪吒最帅,哈哈哈"); } finally { // 释放锁 lock.unlock(); } } }
5. Explore the tryLock source code
1 , tryLock source code
Try to acquire the lock
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException { // 最大等待时间 long time = unit.toMillis(waitTime); long current = System.currentTimeMillis(); long threadId = Thread.currentThread().getId(); Long ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId); if (ttl == null) { return true; } else { // 剩余等待时间 = 最大等待时间 - 获取锁失败消耗的时间 time -= System.currentTimeMillis() - current; if (time <= 0L) {// 获取锁失败 this.acquireFailed(waitTime, unit, threadId); return false; } else { // 再次尝试获取锁 current = System.currentTimeMillis(); // subscribe订阅其它释放锁的信号 RFuture<RedissonLockEntry> subscribeFuture = this.subscribe(threadId); // 当Future在等待指定时间time内完成时,返回true if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) { if (!subscribeFuture.cancel(false)) { subscribeFuture.onComplete((res, e) -> { if (e == null) { // 取消订阅 this.unsubscribe(subscribeFuture, threadId); } }); } this.acquireFailed(waitTime, unit, threadId); return false;// 获取锁失败 } else { try { // 剩余等待时间 = 剩余等待时间 - 获取锁失败消耗的时间 time -= System.currentTimeMillis() - current; if (time <= 0L) { this.acquireFailed(waitTime, unit, threadId); boolean var20 = false; return var20; } else { boolean var16; do { long currentTime = System.currentTimeMillis(); // 重试获取锁 ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId); if (ttl == null) { var16 = true; return var16; } // 再次失败了,再看一下剩余时间 time -= System.currentTimeMillis() - currentTime; if (time <= 0L) { this.acquireFailed(waitTime, unit, threadId); var16 = false; return var16; } // 再重试获取锁 currentTime = System.currentTimeMillis(); if (ttl >= 0L && ttl < time) { // 通过信号量的方式尝试获取信号,如果等待时间内,依然没有结果,会返回false ((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS); } else { ((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS); } time -= System.currentTimeMillis() - currentTime; } while(time > 0L); this.acquireFailed(waitTime, unit, threadId); var16 = false; return var16; } } finally { this.unsubscribe(subscribeFuture, threadId); } } } } }
2. Reset the validity period of the lock
private void scheduleExpirationRenewal(long threadId) { RedissonLock.ExpirationEntry entry = new RedissonLock.ExpirationEntry(); // this.getEntryName():锁的名字,一个锁对应一个entry // putIfAbsent:如果不存在,将锁和entry放到map里 RedissonLock.ExpirationEntry oldEntry = (RedissonLock.ExpirationEntry)EXPIRATION_RENEWAL_MAP.putIfAbsent(this.getEntryName(), entry); if (oldEntry != null) { // 同一个线程多次获取锁,相当于重入 oldEntry.addThreadId(threadId); } else { // 如果是第一次 entry.addThreadId(threadId); // 更新有效期 this.renewExpiration(); } }
Update the validity period, recursively call the update validity period, never expire
private void renewExpiration() { // 从map中得到当前锁的entry RedissonLock.ExpirationEntry ee = (RedissonLock.ExpirationEntry)EXPIRATION_RENEWAL_MAP.get(this.getEntryName()); if (ee != null) { // 开启延时任务 Timeout task = this.commandExecutor.getConnectionManager().newTimeout(new TimerTask() { public void run(Timeout timeout) throws Exception { RedissonLock.ExpirationEntry ent = (RedissonLock.ExpirationEntry)RedissonLock.EXPIRATION_RENEWAL_MAP.get(RedissonLock.this.getEntryName()); if (ent != null) { // 取出线程id Long threadId = ent.getFirstThreadId(); if (threadId != null) { // 刷新有效期 RFuture<Boolean> future = RedissonLock.this.renewExpirationAsync(threadId); future.onComplete((res, e) -> { if (e != null) { RedissonLock.log.error("Can't update lock " + RedissonLock.this.getName() + " expiration", e); } else { if (res) { // 递归调用更新有效期,永不过期 RedissonLock.this.renewExpiration(); } } }); } } } }, this.internalLockLeaseTime / 3L, TimeUnit.MILLISECONDS);// 10S ee.setTimeout(task); } }
Update validity period
protected RFuture<Boolean> renewExpirationAsync(long threadId) { return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN, // 判断当前线程的锁是否是当前线程 "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then // 更新有效期 redis.call('pexpire', KEYS[1], ARGV[1]); return 1; end; return 0;", Collections.singletonList(this.getName()), this.internalLockLeaseTime, this.getLockName(threadId)); }
3. Call lua script
<T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) { // 锁释放时间 this.internalLockLeaseTime = unit.toMillis(leaseTime); return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, command, // 判断锁成功 "if (redis.call('exists', KEYS[1]) == 0) then redis.call('hincrby', KEYS[1], ARGV[2], 1); // 如果不存在,记录锁标识,次数+1 redis.call('pexpire', KEYS[1], ARGV[1]); // 设置锁有效期 return nil; // 相当于Java的null end; if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then redis.call('hincrby', KEYS[1], ARGV[2], 1); // 如果存在,判断锁标识是否是自己的,次数+1 redis.call('pexpire', KEYS[1], ARGV[1]); // 设置锁有效期 return nil; end; // 判断锁失败,pttl:指定锁剩余有效期,单位毫秒,KEYS[1]:锁的名称 return redis.call('pttl', KEYS[1]);", Collections.singletonList(this.getName()), this.internalLockLeaseTime, this.getLockName(threadId)); }
6. Release lock unlock source code
1. Cancel update task
public RFuture<Void> unlockAsync(long threadId) { RPromise<Void> result = new RedissonPromise(); RFuture<Boolean> future = this.unlockInnerAsync(threadId); future.onComplete((opStatus, e) -> { // 取消更新任务 this.cancelExpirationRenewal(threadId); if (e != null) { result.tryFailure(e); } else if (opStatus == null) { IllegalMonitorStateException cause = new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: " + this.id + " thread-id: " + threadId); result.tryFailure(cause); } else { result.trySuccess((Object)null); } }); return result; }
2. Delete timing Task
void cancelExpirationRenewal(Long threadId) { // 从map中取出当前锁的定时任务entry RedissonLock.ExpirationEntry task = (RedissonLock.ExpirationEntry)EXPIRATION_RENEWAL_MAP.get(this.getEntryName()); if (task != null) { if (threadId != null) { task.removeThreadId(threadId); } // 删除定时任务 if (threadId == null || task.hasNoThreads()) { Timeout timeout = task.getTimeout(); if (timeout != null) { timeout.cancel(); } EXPIRATION_RENEWAL_MAP.remove(this.getEntryName()); } } }
The above is the detailed content of What is the method for implementing Redis distributed lock?. For more information, please follow other related articles on the PHP Chinese website!

Compared with other databases, Redis has the following unique advantages: 1) extremely fast speed, and read and write operations are usually at the microsecond level; 2) supports rich data structures and operations; 3) flexible usage scenarios such as caches, counters and publish subscriptions. When choosing Redis or other databases, it depends on the specific needs and scenarios. Redis performs well in high-performance and low-latency applications.

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version