GMAC stands for "Giga Multiply-Add Operations per Second" and is an indicator used to measure the computational efficiency of deep learning models. This metric represents the computational speed of the model in terms of one billion multiplication and addition operations per second.
The multiply-accumulate (MAC) operation is fundamental in many mathematical calculations, including matrix multiplication, convolution, and other tensor operations commonly used in deep learning. Each MAC operation involves multiplying two numbers and adding the result to an accumulator.
The GMAC indicator can be calculated using the following formula:
<code>GMAC =(乘法累加运算次数)/(10⁹)</code>
The number of multiply-add operations is usually determined by analyzing the network architecture and the dimensions of the model parameters, such as weights and biases.
With the GMAC metric, researchers and practitioners can make informed decisions about model selection, hardware requirements, and optimization strategies for efficient and effective deep learning computations.
GFLOPS is a measure of computing performance of a computer system or a specific operation, representing one billion floating-point operations per second. It is the number of floating point operations per second, expressed in billions (giga).
Floating point arithmetic refers to performing arithmetic calculations on real numbers represented in IEEE 754 floating point format. These operations typically include addition, subtraction, multiplication, division, and other mathematical operations.
GFLOPS is commonly used in high-performance computing (HPC) and benchmarking, especially in areas that require heavy computational tasks, such as scientific simulations, data analysis, and deep learning.
Calculate the GFLOPS formula as follows:
<code>GFLOPS =(浮点运算次数)/(以秒为单位的运行时间)/ (10⁹)</code>
GFLOPS is an effective measure of the computing power of different computer systems, processors, or specific operations. It helps evaluate the speed and efficiency of hardware or algorithms that perform floating point calculations. GFLOPS is a measure of theoretical peak performance and may not reflect the actual performance achieved in real-world scenarios because it does not take into account factors such as memory access, parallelization, and other system limitations.
The relationship between GMAC and GFLOPS
<code>1 GFLOP = 2 GMAC</code>
If we want to calculate these two indicators, it will be more troublesome to write the code manually, but Python already has a ready-made library for us to use:
ptflops library can calculate GMAC and GFLOPs
<code>pip install ptflops</code>
It is also very simple to use:
<code>import torchvision.models as models import torch from ptflops import get_model_complexity_info import re #Model thats already available net = models.densenet161() macs, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2 # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0] print('Computational complexity: {:</code>
The results are as follows:
<code>Computational complexity: 7.82 GMac Computational complexity: 15.64 GFlops Number of parameters: 28.68 M</code>
We can customize a model to take a look Is the result correct?
<code>import os import torch from torch import nn class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10),) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits custom_net = NeuralNetwork() macs, params = get_model_complexity_info(custom_net, (28, 28), as_strings=True, print_per_layer_stat=True, verbose=True) # Extract the numerical value flops = eval(re.findall(r'([\d.]+)', macs)[0])*2 # Extract the unit flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0] print('Computational complexity: {:</code>
The result is as follows:
<code>Computational complexity: 670.73 KMac Computational complexity: 1341.46 KFlops Number of parameters: 669.71 k</code>
For the convenience of demonstration, we only write the fully connected layer code to manually calculate GMAC. Iterating over the model weight parameters and calculating the shape of the number of multiplication and addition operations depends on the weight parameters, which is the key to calculating GMAC. The formula for calculating the fully connected layer weight required by GMAC is 2 x (input dimension x output dimension). The total GMAC value is obtained by multiplying and accumulating the shapes of the weight parameters of each linear layer, a process based on the structure of the model.
<code>import torch import torch.nn as nn def compute_gmac(model): gmac_count = 0 for param in model.parameters(): shape = param.shape if len(shape) == 2:# 全连接层的权重 gmac_count += shape[0] * shape[1] * 2 gmac_count = gmac_count / 1e9# 转换为十亿为单位 return gmac_count</code>
According to the model given above, the result of calculating GMAC is as follows:
<code>0.66972288</code>
Since the result of GMAC is in billions, it is not much different from the result we calculated using the class library above . Finally, calculating the GMAC of convolution is a little complicated. The formula is ((input channel x convolution kernel height x convolution kernel width) x output channel) x 2. Here is a simple code, which may not be completely correct. Reference
<code>def compute_gmac(model): gmac_count = 0 for param in model.parameters(): shape = param.shape if len(shape) == 2:# 全连接层的权重 gmac_count += shape[0] * shape[1] * 2 elif len(shape) == 4:# 卷积层的权重 gmac_count += shape[0] * shape[1] * shape[2] * shape[3] * 2 gmac_count = gmac_count / 1e9# 转换为十亿为单位 return gmac_count</code>
The above is the detailed content of A brief analysis of calculating GMAC and GFLOPS. For more information, please follow other related articles on the PHP Chinese website!

Various ways to efficiently save ChatGPT dialogue records Have you ever thought about saving a ChatGPT-generated conversation record? This article will introduce a variety of saving methods in detail, including official functions, Chrome extensions and screenshots, etc., to help you make full use of ChatGPT conversation records. Understand the characteristics and steps of various methods and choose the one that suits you best. [Introduction to the latest AI proxy "OpenAI Operator" released by OpenAI] (The link to OpenAI Operator should be inserted here) Table of contents Save conversation records using ChatGPT Export Steps to use the official export function Save ChatGPT logs using Chrome extension ChatGP

Modern society has a compact pace and efficient schedule management is crucial. Work, life, study and other tasks are intertwined, and prioritization and schedules are often a headache. Therefore, intelligent schedule management methods using AI technology have attracted much attention. In particular, ChatGPT's powerful natural language processing capabilities can automate tedious schedules and task management, significantly improving productivity. This article will explain in-depth how to use ChatGPT for schedule management. We will combine specific cases and steps to demonstrate how AI can improve daily life and work efficiency. In addition, we will discuss things to note when using ChatGPT to ensure safe and effective use of this technology. Experience ChatGPT now and get your schedule

We will explain how to link Google Sheets and ChatGPT to improve business efficiency. In this article, we will explain in detail how to use the add-on "GPT for Sheets and Docs" that is easy for beginners to use. No programming knowledge is required. Increased business efficiency through ChatGPT and spreadsheet integration This article will focus on how to connect ChatGPT with spreadsheets using add-ons. Add-ons allow you to easily integrate ChatGPT features into your spreadsheets. GPT for Shee

There are overarching trends and patterns that experts are highlighting as they forecast the next few years of the AI revolution. For instance, there's a significant demand for data, which we will discuss later. Additionally, the need for energy is d

ChatGPT is not just a text generation tool, it is a true partner that dramatically increases writers' creativity. By using ChatGPT for the entire writing process, such as initial manuscript creation, ideation ideas, and stylistic changes, you can simultaneously save time and improve quality. This article will explain in detail the specific ways to use ChatGPT at each stage, as well as tips for maximizing productivity and creativity. Additionally, we will examine the synergy that combines ChatGPT with grammar checking tools and SEO optimization tools. Through collaboration with AI, writers can create originality with free ideas

Data visualization using ChatGPT: From graph creation to data analysis Data visualization, which conveys complex information in an easy-to-understand manner, is essential in modern society. In recent years, due to the advancement of AI technology, graph creation using ChatGPT has attracted attention. In this article, we will explain how to create graphs using ChatGPT in an easy-to-understand manner even for beginners. We will introduce the differences between the free version and the paid version (ChatGPT Plus), specific creation steps, and how to display Japanese labels, along with practical examples. Creating graphs using ChatGPT: From basics to advanced use ChatG

In general, we know that AI is big, and getting bigger. It’s fast, and getting faster. Specifically, though, not everyone’s familiar with some of the newest hardware and software approaches in the industry, and how they promote better results. Peopl

ChatGPT Dialogue Record Management Guide: Efficiently organize and make full use of your treasure house of knowledge! ChatGPT dialogue records are a source of creativity and knowledge, but how can growing records be effectively managed? Is it time-consuming to find important information? don’t worry! This article will explain in detail how to effectively "archive" (save and manage) your ChatGPT conversation records. We will cover official archive functions, data export, shared links, and data utilization and considerations. Table of contents Detailed explanation of ChatGPT's "archive" function How to use ChatGPT archive function Save location and viewing method of ChatGPT archive records Cancel and delete methods for ChatGPT archive records Cancel archive Delete the archive Summarize Ch


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
