search
HomeBackend DevelopmentPython TutorialHow to split words and convert naming in Python

分割单词

将一个标识符分割成若干单词存进列表,便于后续命名法的转换

先引入正则表达式包

import re

至于如何分割单词看个人喜好,如以常见分隔符 “ ”、“_”、“-”、“/”、“\” 去分割

re.split('[ _\-/\\\\]+', name)

还可以范围再广一点,拿除了数字和字母以外的所有字符去分割

re.split('[^0-9a-zA-Z]', name)

那对于字母内部怎么分割呢?

综合考虑驼峰命名法、连续大写的缩写单词等,笔者根据经验一般会采用这种策略,连续比较三个字符,满足以下条件之一就分割:“小|大无”、“有|大小”、“小|大有”

  • 是尾字符,是大写,倒数第二个字符是小写,在尾字符前分割,比如 'getA' 分割成 ['get','A']

  • 是非首位的中间字符,是大写,前后至少有一个是小写,在该字符前分割,比如 'getJSONString' 分割成 ['get','JSON','String']

对于字母和数字结合的标识符,就比较难处理了

因为有的数字可以作为单词开头(比如 '3D'),有的又可以作为结尾(比如 'HTML5'),还有的字母数字交错(比如 'm3u8'),暂未想到通用的分割的好办法,根据个人需求实现就行了

综合以上几者的分割函数如下

def to_words(name):
    words = []                  # 用于存储单词的列表
    word = ''                   # 用于存储正在构建的单词

    if(len(name) <= 1):
        words.append(name)
        return words

    # 按照常见分隔符进行分割
    # name_parts = re.split(&#39;[ _\-/\\\\]+&#39;, name)
    # 按照非数字字母字符进行分割
    name_parts = re.split(&#39;[^0-9a-zA-Z]&#39;, name)
    for part in name_parts:
        part_len = len(part)        # 字符串的长度
        word = ''
        # 如果子串为空,继续循环
        if not part:
            continue   
        for index, char in enumerate(part):
            # “小|大无”
            if(index == part_len - 1):
                if(char.isupper() and part[index-1].islower()):
                    if(word): words.append(word)
                    words.append(char)
                    word = ''
                    continue

            # “有|大小”或“小|大有”
            elif(index != 0 and char.isupper()):
                if((part[index-1].islower() and part[index+1].isalpha()) or (part[index-1].isalpha() and part[index+1].islower())):
                    if(word): words.append(word)
                    word = ''
            word += char
        if(len(word) > 0): words.append(word)
    # 去除空单词
    return [word for word in words if word != '']

测试用例如下

print(to_words(&#39;IDCard&#39;)) # [&#39;ID&#39;, &#39;Card&#39;]
print(to_words(&#39;getJSONObject&#39;)) # [&#39;get&#39;, &#39;JSON&#39;, &#39;Object&#39;]
print(to_words(&#39;aaa@bbb.com&#39;)) # [&#39;aaa&#39;, &#39;bbb&#39;, &#39;com&#39;]
print(to_words(&#39;D://documents/data.txt&#39;)) # [&#39;D&#39;, &#39;documents&#39;, &#39;data&#39;, &#39;txt&#39;]

分割成全小写单词

def to_lower_words(name):
    words = to_words(name)
    return [word.lower() for word in words]

分割成全大写单词

def to_upper_words(name):
    words = to_words(name)
    return [word.upper() for word in words]

分割成首大写、其余小写单词

def to_capital_words(name):
    words = to_words(name)
    return [word.capitalize() for word in words]

转中划线命名法

中划线命名法,也叫烤肉串命名法(kebab case),如 'kebab-case'

  • 字母全小写

  • 连字符连接

def to_kebab_case(name):
    words = to_lower_words(name)
    to_kebab_case = &#39;-&#39;.join(words)
    return to_kebab_case

转小蛇式命名法

小蛇式命名法,其实就是小写下划线命名法,也叫蛇式命名法(snake case),如 'snake_case'

  • 字母全小写

  • 下划线连接

def to_snake_case(name):
    words = to_lower_words(name)
    snake_case_name = &#39;_&#39;.join(words)
    return snake_case_name

转大蛇式命名法

大蛇式命名法,其实就是大写下划线命名法,也叫宏命名法(macro case),如 'MACRO_CASE'

  • 字母全大写

  • 下划线连接

def to_macro_case(name):
    words = to_upper_words(name)
    snake_case_name = &#39;_&#39;.join(words)
    return snake_case_name

转小驼峰命名法

小驼峰命名法,也叫驼峰命名法(camel case) ,如 'camelCase'

  • 首单词首字母小写,后每个单词首字母大写

  • 不使用连接符

def to_camel_case(name):
    words = to_words(name)
    camel_case_words = []
    for word in words:
        if len(word) <= 1:
            camel_case_words.append(word.upper())
        else:
            camel_case_words.append(word[0].upper() + word[1:])

    camel_case = &#39;&#39;.join(camel_case_words)
    if len(camel_case) <= 1:
        camel_case = camel_case.lower()
    else:
        camel_case = &#39;&#39;.join(camel_case[0].lower() + camel_case[1:])
    return camel_case

转大驼峰命名法

大驼峰命名法,也叫帕斯卡命名法(pascal case) ,如 'PascalCase'

  • 每个单词首字母大写

  • 不使用连接符

def to_pascal_case(name):
    words = to_words(name)
    pascal_case_words = []
    for word in words:
        if len(word) <= 1:
            pascal_case_words.append(word.upper())
        else:
            pascal_case_words.append(word[0].upper() + word[1:])
    pascal_case = &#39;&#39;.join(pascal_case_words)
    return pascal_case

The above is the detailed content of How to split words and convert naming in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
What are some common reasons why a Python script might not execute on Unix?What are some common reasons why a Python script might not execute on Unix?Apr 28, 2025 am 12:18 AM

The reasons why Python scripts cannot run on Unix systems include: 1) Insufficient permissions, using chmod xyour_script.py to grant execution permissions; 2) Shebang line is incorrect or missing, you should use #!/usr/bin/envpython; 3) The environment variables are not set properly, and you can print os.environ debugging; 4) Using the wrong Python version, you can specify the version on the Shebang line or the command line; 5) Dependency problems, using virtual environment to isolate dependencies; 6) Syntax errors, using python-mpy_compileyour_script.py to detect.

Give an example of a scenario where using a Python array would be more appropriate than using a list.Give an example of a scenario where using a Python array would be more appropriate than using a list.Apr 28, 2025 am 12:15 AM

Using Python arrays is more suitable for processing large amounts of numerical data than lists. 1) Arrays save more memory, 2) Arrays are faster to operate by numerical values, 3) Arrays force type consistency, 4) Arrays are compatible with C arrays, but are not as flexible and convenient as lists.

What are the performance implications of using lists versus arrays in Python?What are the performance implications of using lists versus arrays in Python?Apr 28, 2025 am 12:10 AM

Listsare Better ForeflexibilityandMixdatatatypes, Whilearraysares Superior Sumerical Computation Sand Larged Datasets.1) Unselable List Xibility, MixedDatatypes, andfrequent elementchanges.2) Usarray's sensory -sensical operations, Largedatasets, AndwhenMemoryEfficiency

How does NumPy handle memory management for large arrays?How does NumPy handle memory management for large arrays?Apr 28, 2025 am 12:07 AM

NumPymanagesmemoryforlargearraysefficientlyusingviews,copies,andmemory-mappedfiles.1)Viewsallowslicingwithoutcopying,directlymodifyingtheoriginalarray.2)Copiescanbecreatedwiththecopy()methodforpreservingdata.3)Memory-mappedfileshandlemassivedatasetsb

Which requires importing a module: lists or arrays?Which requires importing a module: lists or arrays?Apr 28, 2025 am 12:06 AM

ListsinPythondonotrequireimportingamodule,whilearraysfromthearraymoduledoneedanimport.1)Listsarebuilt-in,versatile,andcanholdmixeddatatypes.2)Arraysaremorememory-efficientfornumericdatabutlessflexible,requiringallelementstobeofthesametype.

What data types can be stored in a Python array?What data types can be stored in a Python array?Apr 27, 2025 am 12:11 AM

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

What happens if you try to store a value of the wrong data type in a Python array?What happens if you try to store a value of the wrong data type in a Python array?Apr 27, 2025 am 12:10 AM

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Which is part of the Python standard library: lists or arrays?Which is part of the Python standard library: lists or arrays?Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function