


How to get the CPU, memory and disk usage of a server using the psutil module?
psutil is a cross-platform Python library that allows you to obtain information about system processes and system resource usage. It supports operating systems such as Windows, Linux, OS , disk usage and other information.
Get the process list, process status, process CPU usage, process memory usage, process IO information, etc.
Kill the process, send a signal to the process, suspend the process, resume the process and other operations.
-
Using psutil, you can easily monitor the running status of the system, diagnose problems and optimize performance. Here is a simple example demonstrating how to use psutil to get system CPU usage and memory usage:
import psutil # 获取磁盘使用率(windows),linux服务器可以获取根目录/下的磁盘使用率 disk_usage_C = psutil.disk_usage('/') #disk_usage()方法可以获取指定路径的磁盘使用情况,返回一个namedtuple对象,包含total、used、free、percent四个属性,分别表示总容量、已用容量、可用容量和使用率。 disk_usage_C = psutil.disk_usage('C:') print("C磁盘总体情况: ","总容量:",round(disk_usage_C.total/1073741824,2),"G"," 磁盘使用率:",disk_usage_C.percent, "%",sep='') # sep='' 去除print()内空格,round(数值,2):保留两位小数 ,1G等于1,073,741,824byte disk_usage_D = psutil.disk_usage('D:') print("D磁盘使用率:","总容量:",round(disk_usage_D.total/1073741824,2),"G"," 磁盘使用率:",disk_usage_D.percent, "%",sep='') disk_usage_E = psutil.disk_usage('E:') print("E磁盘使用率:","总容量:",round(disk_usage_E.total/1099511627776,1),"T"," 磁盘使用率:",disk_usage_E.percent, "%",sep='') # 获取内存使用率 #virtual_memory()方法可以获取系统内存使用情况,返回一个namedtuple对象,包含total、available、percent、used、free五个属性,分别表示总内存、可用内存、使用率、已用内存和可用内存。 mem = psutil.virtual_memory() print("内存总量: ",round(mem.total/1073741824,2),"内存使用率:", mem.percent, "%") # 获取CPU使用率 #cpu_percent()方法可以获取CPU使用率,可以指定采样间隔(默认为1秒),返回一个浮点数,表示CPU使用率 cpu_percent = psutil.cpu_percent(interval=1) print("cpu核数: ",psutil.cpu_count(),"CPU使用率:", cpu_percent, "%")
The above is the detailed content of How to get the CPU, memory and disk usage of a server using the psutil module?. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!
