Translator | Bugatti
Review | Chonglou
You might use face blur for several reasons. Hide faces in videos or images. Privacy and security concerns are the main reasons. Most video sharing platforms and video editing software have built-in face blur features.
You can create your own face blur program from scratch using Python, OpenCV and NumPy libraries.
1. Establishing the environment
To complete the study of this article, you need to be familiar with the basic knowledge of Python and have a basic understanding of the use of the NumPy library.
Open any Python IDE you are familiar with. Create a virtual environment to install the required libraries. Create a new Python file. Go to the terminal and run the following commands to install the required libraries. Pass the libraries as a space-separated list.
pip install OpenCV-python NumPy
You will use OpenCV to obtain and preprocess the video input and NumPy to process the array.
Once you have installed the library, wait for the IDE to update the project backbone. Once the updates are complete and your environment is ready, you can start coding.
Note: The complete source code can be found in the GitHub repository (https://github.com/makeuseofcode/Face-Blurring).
2. Import the required libraries
First, import the OpenCV library and NumPy library. This will enable you to call and use any function they support. Import OpenCV-python as cv2.
import cv2 import numpy as np
The OpenCV-python module uses the name cv2 as a convention established by the OpenCV community. OpenCV-Python is a Python wrapper for the OpenCV library, written in C.
3. Get input
Create a variable and initialize the VideoCapture object. If you want to use your computer's main camera as the input source, you should pass 0 as the parameter. To use an external camera connected to your computer, pass 1. To perform face blurring on a pre-recorded video, pass the path of the video instead. To use a remote camera, pass the camera's URL, which contains the IP address and port number.
cap = cv2.VideoCapture(0)
To perform face blurring on input, you need these three functions:
- Functions that preprocess the input.
- Function that will blur the faces in the input.
- The main function that will control the program flow and display the output.
4. Video input preprocessing
Create an input preprocessing function that takes each frame of the input video as its input. Initialize the CascadeClassifier class, which you will use to detect faces. Resize the frame to 640*640 pixels. Convert the resized frames to grayscale for processing, and finally detect faces in the input and bind them to rectangles.
def image_preprocess(frame): face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') resized_image = cv2.resize(frame, (640, 640)) gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY) face_rects = face_detector.detectMultiScale( gray_image, 1.04, 5, minSize=(20, 20)) return resized_image, face_rects
This function returns a tuple containing the resized image and a list of rectangles representing the detected faces.
5. Blur the face
Create a blur function to blur the input face. This function takes as input the resized frame and the list of rectangles surrounding the face returned by the preprocessing function. Loop through face rectangles. Calculate the center of each rectangle and the radius of the blur circle. Creates a black image with the same dimensions as the resized frame by initializing all pixels to 0. Using the calculated radius, draw a white circle on the black image centered on the face rectangle. Finally, it blurs the image on the white circle.
def face_blur(resized_frame, face_rects): for (x, y, w, h) in face_rects: # Specifying the center and radius # of the blurring circle center_x = x + w // 3 center_y = y + h // 3 radius = h // 1 # creating a black image having similar # dimensions as the frame mask = np.zeros((resized_frame.shape[:3]), np.uint8) # draw a white circle in the face region of the frame cv2.circle(mask, (center_x, center_y), radius, (255, 255, 255), -1) # blurring the whole frame blurred_image = cv2.medianBlur(resized_frame, 99) # reconstructing the frame: # - the pixels from the blurred frame if mask > 0 # - otherwise, take the pixels from the original frame resized_frame = np.where(mask > 0, blurred_image, resized_frame) return resized_frame
This function uses the NumPy where() function to reconstruct the frame during the blur process.
6. Control the program flow
Create a main function to serve as the entry point of the program. It will then control the program flow. This function will start an infinite loop that continuously captures frames of the video input. Call the read method of the cap object to read frames from the camera.
The function then passes the frame to the preprocessing function and the return value to another function face_blur to obtain the blurred image. It then resizes the frame returned by the blur function and displays the output.
def main(): while True: success, frame = cap.read() resized_input, face_rects = image_preprocess(frame) blurred_image = face_blur(resized_input, face_rects) # Diplaying the blurred image cv2.imshow("Blurred image", cv2.resize(blurred_image, (500, 500))) if cv2.waitKey(1) == ord("q"): break
This function also terminates the output display when the user presses the q key.
7. Run the program
Make sure to run the main function first when running the script. This condition will be false if the script is imported as a module in another program.
if __name__ == "__main__": main()
This allows you to use the script as a module or run it as a standalone program. When the program runs, you should see output similar to this:
The face has been blurred and cannot be recognized come out.
8. Practical applications of face blur
You can use face blur to protect privacy in many types of application environments. Street View and mapping services use blurring technology to obscure the faces of people in images. Law enforcement uses face blurring technology to protect the identities of witnesses.
Many video sharing platforms have also integrated face blur functions for users. Comparing the use of face blur in these areas can help you see how other platforms are integrating this technology.
Original link: https://www.makeuseof.com/python-blur-human-faces-real-time/
The above is the detailed content of How to blur faces in real time using Python. For more information, please follow other related articles on the PHP Chinese website!

白平衡是一项相机功能,可根据照明条件调整演色性。此iPhone设置可确保白色物体在照片或视频中显示为白色,从而补偿由于典型照明而导致的任何颜色变化。如果您想在整个视频拍摄过程中保持白平衡一致,可以将其锁定。在这里,我们将指导您如何为iPhone视频保持固定的白平衡。如何在iPhone上锁定白平衡必需:iOS17更新。(检查“常规>软件更新”下的“设置”>)。在iPhone上打开“设置”应用。在“设置”中,向下滚动并选择“相机”。在“相机”屏幕上,点击“录制视频”。在这

我们可以使用Mutagen和Python中的eyeD3模块访问音频文件的元数据。对于视频元数据,我们可以使用电影和Python中的OpenCV库。元数据是提供有关其他数据(例如音频和视频数据)的信息的数据。音频和视频文件的元数据包括文件格式、文件分辨率、文件大小、持续时间、比特率等。通过访问这些元数据,我们可以更有效地管理媒体并分析元数据以获得一些有用的信息。在本文中,我们将了解Python提供的一些用于访问音频和视频文件元数据的库或模块。访问音频元数据一些用于访问音频文件元数据的库是-使用诱变

ppt视频换个电脑就无法播放是因为路径不对,其解决办法:1、将PPT和视频放入U盘的同一个文件夹内;2、双击打开该PPT,找到想要插入视频的页数,点击“插入”按钮;3、在弹出的对话框内选择想要插入的视频即可。

视频切片授权是指在视频服务中,将视频文件分割成多个小片段并进行授权的过程。这种授权方式能提供更好的视频流畅性、适应不同网络条件和设备,并保护视频内容的安全性。通过视频切片授权,用户可以更快地开始播放视频,减少等待和缓冲时间,视频切片授权可以根据网络条件和设备类型动态调整视频参数,提供最佳的播放效果,视频切片授权还有助于保护视频内容的安全性,防止未经授权的用户进行盗播和侵权行为。

如何使用Golang将多个图片转换为视频随着互联网的发展和智能设备的普及,视频成为了一种重要的媒体形式。有时候我们可能需要将多个图片转换为视频,以便展示图片的连续变化或者制作幻灯片。本文将介绍如何使用Golang编程语言将多个图片转换为视频。在开始之前,请确保你已经安装了Golang以及相关的开发环境。步骤1:导入相关的包首先,我们需要导入一些相关的Gola

在iOS17中,当您FaceTime通话某人无法接听时,您可以留下视频或音频信息,具体取决于您使用的通话方式。如果您使用的是FaceTime视频,则可以留下视频信息,如果您使用的是FaceTime音频,则可以留下音频信息。您所要做的就是以通常的方式与某人进行FaceTime。未接来电后,您将看到“录制视频”选项,该选项可让您创建消息。录制完视频后,您会看到视频的预览,如果效果不佳,还可以选择重新录制。以下是在运行iOS17的设备上留下FaceTime消息的工作原理,以未接视频通话为例,在Face

随着互联网的不断发展,视频已经成为了人们日常生活中必不可少的娱乐方式之一。为了给用户提供更好的视频观看体验,许多网站和应用程序都开始使用视频播放器,使得用户可以在网页中直接观看视频。而Vue作为目前非常流行的前端框架之一,也提供了很多简便且实用的方法来实现视频播放器。下面,我们将简要介绍一下在Vue中实现视频播放器的方法。一、使用HTML5的video标签H

电脑打不开视频原因有:1、视频文件不完整;2、没有支持此视频的播放器;3、视频文件的后缀被修改过;4、视频文件关联不正确;5、没有使用插件。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Chinese version
Chinese version, very easy to use
