Detailed analysis of python decorator
Detailed analysis of python decorator
What Is it a decorator?
Recommended learning: Python video tutorial
Python decorators (fuctional decorators) are functions used to expand the functionality of the original function. The purpose is to When changing the original function name (or class name), add new functions to the function.
The special thing about this function is that its return value is also a function. This function is a function with the "original" function embedded in it.
Generally speaking, if we want to expand the original function code, the most direct way is to invade the code and modify it, for example:
import time def f(): print("hello") time.sleep(1) print("world")
This is our most original function, and then we try to record the total execution time of this function, then The simplest way is to change the original code:
import time def f(): start_time = time.time() print("hello") time.sleep(1) print("world") end_time = time.time() execution_time = (end_time - start_time)*1000 print("time is %d ms" %execution_time)
But in actual work, sometimes the core code cannot be changed directly, so without changing the original code, we You can define another function. (But the function needs to be executed again to take effect)
import time def deco(func): start_time = time.time() f() end_time = time.time() execution_time = (end_time - start_time)*1000 print("time is %d ms" %execution_time) def f(): print("hello") time.sleep(1) print("world") if __name__ == '__main__': deco(f) print("f.__name__ is",f.__name__) print()
Here we define a function deco, whose parameter is a function, and then embed the timing function into this function . But if you want to expand the functions of these tens of millions of functions,
means executing the deco() function ten million times, so this is not ideal! Next, we can try to use decorators to achieve it. First Take a look at the most original appearance of the decorator.
import time def deco(f): def wrapper(): start_time = time.time() f() end_time = time.time() execution_time = (end_time - start_time)*1000 print("time is %d ms" %execution_time ) return wrapper @deco def f(): print("hello") time.sleep(1) print("world") if __name__ == '__main__': f()
The deco function here is the most original decorator. Its parameter is a function, and the return value is also a function.
The function f() as a parameter is executed inside the return function wrapper(). Then add @deco in front of the function f(),
f() function is equivalent to being injected With the timing function, now as long as f() is called, it has been transformed into a "new function with more functions",
(no need to repeat the original function).
Extension 1: Decorator with fixed parameters
import time def deco(f): def wrapper(a,b): start_time = time.time() f(a,b) end_time = time.time() execution_time = (end_time - start_time)*1000 print("time is %d ms" % execution_time) return wrapper @deco def f(a,b): print("be on") time.sleep(1) print("result is %d" %(a+b)) if __name__ == '__main__': f(3,4)
Extension 2: Decorator without fixed parameters
import time def deco(f): def wrapper(*args, **kwargs): start_time = time.time() f(*args, **kwargs) end_time = time.time() execution_time_ = (end_time - start_time)*1000 print("time is %d ms" %execution_time) return wrapper @deco def f(a,b): print("be on") time.sleep(1) print("result is %d" %(a+b)) @deco def f2(a,b,c): print("be on") time.sleep(1) print("result is %d" %(a+b+c)) if __name__ == '__main__': f2(3,4,5) f(3,4)
Extension 3: Use multiple decorators to decorate a function
import time def deco01(f): def wrapper(*args, **kwargs): print("this is deco01") start_time = time.time() f(*args, **kwargs) end_time = time.time() execution_time = (end_time - start_time)*1000 print("time is %d ms" % execution_time) print("deco01 end here") return wrapper def deco02(f): def wrapper(*args, **kwargs): print("this is deco02") f(*args, **kwargs) print("deco02 end here") return wrapper @deco01 @deco02 def f(a,b): print("be on") time.sleep(1) print("result is %d" %(a+b)) if __name__ == '__main__': f(3,4)
''' this is deco01 this is deco02 hello,here is a func for add : result is 7 deco02 end here time is 1003 ms deco01 end here '''
Decorator calling order
Decorators can be used superimposed, so what is the order of the code after using the decorator?
For the "@" syntax in Python Sugar, the order in which the decorators are called is the reverse of the order declared using the @ syntax sugar.
In this example, "f(3, 4) = deco01(deco02(f(3, 4)))".
Python built-in decorators
There are three built-in decorators in Python, all related to classes: staticmethod, classmethod and property .
staticmethod is a class static method. Its difference from the member method is that it has no self parameter and can be called without instantiating the class.
The difference between classmethod and member method is that The first parameter received is not self (a pointer to a class instance), but cls (the specific type of the current class)
property means property, indicating information that can be directly accessed through a class instance
I won’t introduce staticmethod and classmethod here. Let’s take a look at property through an example.
Note that for Python new-style classes, if the member function decorated by the "@var.setter" decorator above is removed, Foo. The var attribute is a read-only attribute, and an exception will be thrown when assigning a value using "foo.var = 'var 2′". However, for Python classic class, the declared attributes are not read-only, so even if the "@var.setter" decorator is removed, no error will be reported.
Summary
This article introduces some uses of Python decorators. The code of the decorator is relatively easy to understand. It is easy to understand as long as you practice it through some examples.
The above is the detailed content of Detailed explanation of python decorators. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 English version
Recommended: Win version, supports code prompts!
