search
HomeBackend DevelopmentPython TutorialIs it easy to convert Python to big data?

Data is an asset. Big data engineer is a very hot and high-paying position now. Not only Java is used for big data development and analysis, Python is also the most important language.

Is it easy to convert Python to big data?

So, today we will analyze the significance and role of Python in big data. (Recommended learning: Python video tutorial)

What is big data?

Big data refers to a collection of data that cannot be captured, managed and processed within a certain time range using conventional software tools. It requires new processing models to have stronger decision-making power. Massive, high-growth and diverse information assets with insight discovery and process optimization capabilities.

Why is python big data?

From the encyclopedia introduction to big data, we can see that if big data wants to become an information asset, two steps are required. One is how the data comes from, and the other is data processing.

How does the data come from:

As for how the data comes from, data mining is undoubtedly the first choice for many companies or individuals. After all, most companies or individuals do not have The only way to generate so much data is to mine relevant data on the Internet.

Web crawlers are Python’s traditional strong areas. The most popular crawler framework Scrapy, HTTP tool kit urlib2, HTML parsing tool beautifulsoup, XML parser lxml, etc. are all class libraries that can stand alone.

Of course, web crawlers don’t just open web pages, how simple is it to parse HTML. An efficient crawler must be able to support a large number of flexible concurrent operations, and often be able to crawl thousands or even tens of thousands of web pages at the same time. The traditional thread pool method wastes a lot of resources. After the number of threads reaches thousands, system resources are basically wasted. Thread scheduling is on.

Because Python can well support coroutine operations, many concurrency libraries have been developed based on this, such as Gevent, Eventlet, and distributed task frameworks such as Celery. ZeroMQ, which is considered more efficient than AMQP, was also the first to provide a Python version. With support for high concurrency, web crawlers can truly reach the scale of big data.

Data processing:

With big data, you also need to process it to find the data that suits you. In the direction of data processing, Python is also one of the favorite languages ​​​​of data scientists. This is because Python itself is an engineering language. The algorithms implemented by data scientists in Python can be directly used in products, which is very important for big data startups. Cost savings can be very helpful.

It is precisely for these reasons that the python language has become the first choice for many companies to process big data. In addition, python itself is simple, easy to learn, and has many libraries, so more and more people choose to switch to python.

For more Python related technical articles, please visit the Python Tutorial column to learn!

The above is the detailed content of Is it easy to convert Python to big data?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function