Python is an object-oriented, literal computer programming language invented by Guido van Rossum at the end of 1989. Because of its simplicity, easy to learn, free and open source, portability, scalability and other characteristics, Python is also called the glue language. The figure below shows the popular trends of major programming languages in recent years. Python’s popularity has skyrocketed.
Recommended courses: Python Tutorial
Knowledge and skills required for python data analysis:
1. Python introduction, Python environment installation, Python experience2. Python basics, Syntax, data types, branches, loops, judgments, functions3. Python oop, multi-threading, io, socket, modules, packages, import control4. Python regular expressions, Python Crawler implementation5. Basics of determinants, transposition, matrix definition, matrix operations, inverse matrix, matrix decomposition, matrix transformation, matrix rank6. Python implementation of common matrix algorithms7. Principles and uses of commonly used algorithm libraries in Python, numpy, pandas, sklearn8. Data loading, storage, format processing9. Data regularization, drawing and visualization Because Python has a very rich library, it is also widely used in the field of data analysis. Since Python itself has a very wide range of applications, this issue of Python Data Analysis Roadmap mainly describes the Python data analysis roadmap from the perspective of data analysis practitioners. The entire roadmap is planned to be divided into 16 weeks and about 120 days.The main learning content includes four parts:
1) Understanding the Python working environment and basic grammar knowledge (including learning about regular expressions); 2) Data collection Relevant knowledge (python crawler related knowledge); 3) Data analysis learning; 4) Data visualization learning.Python data analysis is an important part of big data, in addition to In addition, if you want to master more advanced big data skills, you also need to master big data knowledge such as Java, Linux, Hadoop, Hive, Avro and Protobuf, ZooKeeper, HBase, Phoenix, Flume, SSM, Kafka, Scala, Spark, azkaban, etc. Skill!
The above is the detailed content of How to learn python data analysis. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
