This article mainly introduces how to use the timer timeit in python. It has certain reference value. Now I share it with you. Friends in need can refer to it.
This article introduces the timer in python. I would like to share with you how to use the timer timeit, as follows:
timeit
Usually time.time() is used before and after a program. , and then subtract it to get the running time of a program, but python provides a more powerful timing library: timeit
#导入timeit.timeit from timeit import timeit #看执行1000000次x=1的时间: timeit('x=1') #看x=1的执行时间,执行1次(number可以省略,默认值为1000000): timeit('x=1', number=1) #看一个列表生成器的执行时间,执行1次: timeit('[i for i in range(10000)]', number=1) #看一个列表生成器的执行时间,执行10000次: timeit('[i for i in range(100) if i%2==0]', number=10000)
Test the execution time of a function :
from timeit import timeit def func(): s = 0 for i in range(1000): s += i print(s) # timeit(函数名_字符串,运行环境_字符串,number=运行次数) t = timeit('func()', 'from __main__ import func', number=1000) print(t)
This program tests the execution time of the function running 1000 times
repeat:
Since there are always other programs on the computer that are also occupying resources, your program cannot execute most efficiently. Therefore, multiple tests are generally conducted, and the smallest execution time is taken as the real execution time.
from timeit import repeat def func(): s = 0 for i in range(1000): s += i #repeat和timeit用法相似,多了一个repeat参数,表示重复测试的次数(可以不写,默认值为3.),返回值为一个时间的列表。 t = repeat('func()', 'from __main__ import func', number=100, repeat=5) print(t) print(min(t))
Related recommendations:
Example of Python method to calculate the value of pi to any position
The above is the detailed content of How to use timer timeit in python. For more information, please follow other related articles on the PHP Chinese website!

The reasons why Python scripts cannot run on Unix systems include: 1) Insufficient permissions, using chmod xyour_script.py to grant execution permissions; 2) Shebang line is incorrect or missing, you should use #!/usr/bin/envpython; 3) The environment variables are not set properly, and you can print os.environ debugging; 4) Using the wrong Python version, you can specify the version on the Shebang line or the command line; 5) Dependency problems, using virtual environment to isolate dependencies; 6) Syntax errors, using python-mpy_compileyour_script.py to detect.

Using Python arrays is more suitable for processing large amounts of numerical data than lists. 1) Arrays save more memory, 2) Arrays are faster to operate by numerical values, 3) Arrays force type consistency, 4) Arrays are compatible with C arrays, but are not as flexible and convenient as lists.

Listsare Better ForeflexibilityandMixdatatatypes, Whilearraysares Superior Sumerical Computation Sand Larged Datasets.1) Unselable List Xibility, MixedDatatypes, andfrequent elementchanges.2) Usarray's sensory -sensical operations, Largedatasets, AndwhenMemoryEfficiency

NumPymanagesmemoryforlargearraysefficientlyusingviews,copies,andmemory-mappedfiles.1)Viewsallowslicingwithoutcopying,directlymodifyingtheoriginalarray.2)Copiescanbecreatedwiththecopy()methodforpreservingdata.3)Memory-mappedfileshandlemassivedatasetsb

ListsinPythondonotrequireimportingamodule,whilearraysfromthearraymoduledoneedanimport.1)Listsarebuilt-in,versatile,andcanholdmixeddatatypes.2)Arraysaremorememory-efficientfornumericdatabutlessflexible,requiringallelementstobeofthesametype.

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
