


This article mainly introduces the issue of overloading isinstance inheritance relationship in Python. It has certain reference value. Now I share it with you. Friends in need can refer to it
for judgment. Inheritance relationship
You can determine whether an object is an instance of a certain class through the built-in method isinstance(object, classinfo). This relationship can be direct, indirect or abstract.
Instance checks are allowed to be overloaded, see the document customizing-instance-and-subclass-checks. According to the description of PEP 3119:
The primary mechanism proposed here is to allow overloading the built-in functions isinstance() and issubclass(). The overloading works as follows: The call isinstance(x, C ) first checks whether C.__instancecheck__ exists, and if so, calls C.__instancecheck__(x) instead of its normal implementation.
The meaning of this passage is that when calling isinstance(x , C) When performing detection, it will first check whether C.__instancecheck__ exists. If it exists, C.__instancecheck__(x) will be called. The returned result is the result of instance detection, and there is no default judgment method.
This method helps us check duck types. I tested it with code.
class Sizeable(object): def __instancecheck__(cls, instance): print("__instancecheck__ call") return hasattr(instance, "__len__") class B(object): pass b = B() print(isinstance(b, Sizeable)) # output:False
Only False is printed, and __instancecheck__ is not called. How is this going.
Not running __instancecheck__
It can be seen that the document is not clearly written. In order to find out the problem, we start tracing from the isinstance source code.
[abstract.c] int PyObject_IsInstance(PyObject *inst, PyObject *cls) { _Py_IDENTIFIER(__instancecheck__); PyObject *checker; /* Quick test for an exact match */ if (Py_TYPE(inst) == (PyTypeObject *)cls) return 1; .... }
Py_TYPE(inst) == (PyTypeObject *)cls This is a fast matching method, equivalent to type(inst) is cls, which If the match is successful in this fast way, __instancecheck__ will not be checked. So the priority check in the document for the existence of C.__instancecheck__ is wrong. Continue to look down at the source code:
/* We know what type's __instancecheck__ does. */ if (PyType_CheckExact(cls)) { return recursive_isinstance(inst, cls); }
Expand the macro PyType_CheckExact:
[object.h] #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
That is If cls is a class directly constructed from type, then the judgment language is established. Except for the metaclass specified in the class declaration, it is basically constructed directly by type. Knowing from the test code that the judgment is established, enter recursive_isinstance. But I didn't find the code about __instancecheck__ in this function. The judgment logic of recursive_isinstance is roughly:
def recursive_isinstance(inst, cls): return pyType_IsSubtype(inst, cls) def pyType_IsSubtype(a, b): for mro in a.__mro__: if mro is b: return True return False
is judged from the __mro__ inheritance sequence. Go back to the PyObject_IsInstance function and look down:
if (PyTuple_Check(cls)) { ... }
This is the case when the second parameter of instance(x, C) is a tuple, and the processing method inside It is a recursive call to PyObject_IsInstance(inst, item). Continue reading:
checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__); if (checker != NULL) { res = PyObject_CallFunctionObjArgs(checker, inst, NULL); ok = PyObject_IsTrue(res); return ok; }
Obviously, this is where __instancecheck__ is obtained. In order to get the check process to this point, the defined class must specify metaclass . All that's left is to track _PyObject_LookupSpecial:
[typeobject.c] PyObject * _PyObject_LookupSpecial(PyObject *self, _Py_Identifier *attrid) { PyObject *res; res = _PyType_LookupId(Py_TYPE(self), attrid); // 有回调的话处理回调 // ... return res; }
takes Py_TYPE(self), which means that __instancecheck__ needs to be defined in the specified metaclass.
Summary
So far, summarize the conditions for overloading the isinstance(x, C) behavior:
x objects cannot be directly instantiated by C;
C class specifies metaclass;
specifies __instancecheck__ in the metaclass class.
Test code:
class MetaSizeable(type): def __instancecheck__(cls, instance): print("__instancecheck__ call") return hasattr(instance, "__len__") class Sizeable(metaclass=MetaSizeable): pass class B(object): pass b = B() print(isinstance(b, Sizeable)) # output: False print(isinstance([], Sizeable)) # output: True
The documentation may be a bit old. The environment for this test is Python3.6.
Related recommendations:
Detailed explanation of read_excel in Python 2.7 pandas
The above is the detailed content of A brief discussion on the problem of overloading isinstance inheritance relationship in Python. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version
