


Detailed explanation of how python uses urllib/urllib2 to access http's GET and POST
urllib模块提供的上层接口,使我们可以像读取本地文件一样读取www和ftp上的数据。下面这篇文章主要给大家介绍了关于python如何利用urllib和urllib2访问http的GET/POST的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
前言
本文主要给大家介绍了关于python如何访问http的GET/POST的相关内容,使用urllib和urllib2,可以轻松实现对http的访问,下面话不多说了,来一起看看详细的介绍吧。
示例详解
以下给个例子,实现对http://127.0.0.1/cgi/test的GET与POST
使用的是平常意义上的query string
POST接受json
其中,
urllib2的Request方法如果只带一个参数是GET方法,但如果带两个参数,则为http的POST方法,第二个参数为POST的内容。
#!/usr/bin/env python import urllib import urllib2 import json url_base = "http://127.0.0.1/cgi/test" #GET try: query = {'test':'yes','name':'colin'} query_string = urllib.urlencode(query) url = url_base+"?"+query_string print "GET", url<br data-filtered="filtered"> print "web output:" print urllib2.urlopen(urllib2.Request(url)).read() except Exception as err: print err #post try: url = url_base print "POST", url a = {'k1':123, 'k2': '456', 'k3':'test'} json_s = json.dumps(a)<br data-filtered="filtered"> print "POST input:" print json_s<br data-filtered="filtered"> print "web output:" print urllib2.urlopen(urllib2.Request(url, json_s)).read() except Exception as err: print err
test用bash编写,如下所示,其中jq是处理json的命令,需要下载一下,bash/sed/awk应该都是系统自带
#!/bin/bash echo -e 'Content-type:text/plain\r' echo -e '\r' if [ X"$REQUEST_METHOD" = X"POST" ];then jq . | sed -nr '/:/!d; s/^([ \t]*"[^"]+"[ \t]*):/\1=/;s/,[ \t]*$//;s/"//g;p' else echo ${QUERY_STRING} | awk 'BEGIN{RS="&"}1' fi
随便用什么webserver都可以,只要支持CGI,我这里用是一个很轻量的webserver——boa,它可能不适合大型应用网站,但嵌入式里用CGI提供API还是很有用的,部署非常容易。
搭建之后,测试一下
$ ./test.py GET http://127.0.0.1/v1/lic/test?test=yes&name=colin web output: test=yes name=colin POST http://127.0.0.1/v1/lic/test POST input: {"k3": "test", "k2": "456", "k1": 123} web output: k3= test k2= 456 k1= 123
总结
The above is the detailed content of Detailed explanation of how python uses urllib/urllib2 to access http's GET and POST. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!
