


This article mainly introduces the definition and usage of linked lists in Python data structures and algorithms. It analyzes the definitions, usage methods and related precautions of singly linked lists, circular linked lists, etc. in detail based on specific examples. Friends in need can refer to it. Next
The examples in this article describe the definition and usage of linked lists in Python data structures and algorithms. Share it with everyone for your reference, the details are as follows:
This article will explain to you:
(1) Starting from the definition of linked list nodes, use the class method and object-oriented thinking to create the linked list Design
(2) Boundary conditions that need to be considered when implementing member functions such as insertion and deletion of linked list classes,
prepend (head insertion), pop (head deletion), append (tail insertion), pop_last (Tail deletion)
2.1 Insertion:
Empty linked list
The length of the linked list is 1
Insert to the end
2.2 Delete
Empty linked list
The length of the linked list is 1
Delete the last element
(3) Numerous variations from singly linked list to singly linked list:
Singly linked list with tail node
Cyclic singly linked list
Double linked list
1. Definition of linked list nodes
class LNode: def __init__(self, elem, next_=None): self.elem = elem self.next = next_
2. Implementation of singly linked list
Focus on understanding the implementation of insertion and deletion and the boundary conditions that need to be considered:
class LinkedListUnderflow(ValueError): pass class LList: def __init__(self): self._head = None def is_empty(self): return self._head is None def prepend(self, elem): self._head = LNode(elem, self._head) def pop(self): if self._head is None: raise LinkedListUnderflow('in pop') e = self._head.elem self._head = self._head.next return e def append(self, elem): if self._head is None: self._head = LNode(elem) return p = self._head while p.next is not None: p = p.next p.next = LNode(elem) def pop_last(self): if self._head is None: raise LinkedListUnderflow('in pop_last') p = self._head if p.next is None: e = p.elem self._head = None return e while p.next.next is not None: p = p.next e = p.next.elem p.next = None return e
Simple summary:
(0) The premise of being able to access p.next.next is that p.next is not empty;
(1) Tail insertion, if the linked list is not Empty, what needs to be changed is the pointer of the tail node;
(2) Tail deletion, if the length of the linked list is not empty, what needs to be changed is the pointer of the penultimate node.
Simple transformation of singly linked list: singly linked list with tail node
class LList1(LList): def __init__(self): LList.__init__(self) self._rear = None ...
What we only need to rewrite is: Head insertion, tail insertion, tail deletion
def prepend(self, elem): if self._head is None: self._head = LNode(elem) self._rear = self._head else: self._head = LNode(elem, self._head) def append(self, elem): if self._head is None: self._head = LNode(elem) self._rear = self._head else: self._rear.next = LNode(elem) self._rear = self._rear.next def pop_last(self): if self._head is None: raise LinkedListUnderflow('in pop_last') p = self._head if p.next is None: e = p.elem self._head = None return e while p.next.next is not None: p = p.next e = p.next.elem self._rear = p p.next = None return e
Variation of singly linked list: cyclic singly linked list
class LCList: def __init__(self): self._rear = None def prepend(self, elem): if self._rear is None: self._rear = LNode(elem) self._rear.next = self._rear else: self._rear.next = LNode(elem, self._rear.next) def append(self, elem): self.prepend(elem) self_rear = self._rear.next def pop(self): if self._rear is None: raise LinkedListUnderflow('in pop') p = self._rear.next if p is None: self._rear = None else: self._rear.next = p.next return p.elem def printall(self): if self._rear is None: raise ... p = self._rear.next while True: print(p.elem) if p is self._rear: break p = p.next
The above is the detailed content of Detailed explanation of the use of linked list definitions of Python data structures and algorithms. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
