1. Purpose
We need to serialize the data in memory, that is, when writing to a file, the type written can only be a string or binary type. But if we want to serialize more complex data types, such as lists, dictionaries or functions, we have to use json or pickle.
2. json serialization
1. Serialization of dumps and deserialization of loads
dumps converts the data type into a string
import json info = { 'name': 'The Count of Monte Cristo', 'type': 'Movie' } data = json.dumps(info) print(data) print(type(data)) # 输出 {"name": "The Count of Monte Cristo", "type": "Movie"} <class 'str'>
loads converts the string into a data type
import json get_info = json.loads(data) print(get_info['name']) print(get_info) print(type(get_info)) #输出 The Count of Monte Cristo {'name': 'The Count of Monte Cristo', 'type': 'Movie'} <class 'dict'>
2.dump serialization and load deserialization
dump converts the data Convert the type to a string and store it in the file
import json info = { 'name': 'The Count of Monte Cristo', 'type': 'Movie' } with open("test.txt", "w", encoding="utf-8") as f: json.dump(info, f) # 第一个参数是内存中的数据对象,第二个参数是文件句柄 #写入文件中的内容 {"name": "The Count of Monte Cristo", "type": "Movie"}
loadConvert the file opening from a string to a data type
import json with open("test.txt", "r", encoding="utf-8") as f: data_from_file = json.load(f) print(data_from_file['name']) print(data_from_file) print(type(data_from_file)) #输出 The Count of Monte Cristo {'name': 'The Count of Monte Cristo', 'type': 'Movie'} <class 'dict'>
3.json serializes a function
import json def test(name): print("hello,{}".format(name)) info = { 'name': 'The Count of Monte Cristo', 'type': 'Movie', 'func': test } data = json.dumps(info) #输出 File "G:/python/untitled/study6/json&pickle模块.py", line 22, in <module> data = json.dumps(info) File "G:\python\install\lib\json\__init__.py", line 230, in dumps return _default_encoder.encode(obj) File "G:\python\install\lib\json\encoder.py", line 198, in encode chunks = self.iterencode(o, _one_shot=True) File "G:\python\install\lib\json\encoder.py", line 256, in iterencode return _iterencode(o, 0) File "G:\python\install\lib\json\encoder.py", line 179, in default raise TypeError(repr(o) + " is not JSON serializable") TypeError: <function test at 0x0000021B13C57F28> is not JSON serializable
1. JSON can only handle simple data types, such as dictionaries, lists, strings, etc. It cannot handle complex data types such as functions.
2, json is common to all languages, and all languages support json. If we need python to interact with other languages for data, then use json format
3. Pickle serialization
The usage of pickle is the same as above, but the data type after pickle serialization is binary, and pickle can only be used in python use.
1.dumps && loads
import pickle def test(name): print("hello,{}".format(name)) info = { 'name': 'The Count of Monte Cristo', 'type': 'Movie', 'func': test } data = pickle.dumps(info) print(data) print(type(data)) #输出 b'\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x19\x00\x00\x00The Count of Monte Cristoq\x02X\x04\x00\x00\x00typeq\x03X\x05\x00\x00\x00Movieq\x04X\x04\x00\x00\x00funcq\x05c__main__\ntest\nq\x06u.' <class 'bytes'>
import pickle get_data = pickle.loads(data) get_data['func']('cat') print(get_data) #输出 hello,cat {'name': 'The Count of Monte Cristo', 'type': 'Movie', 'func': <function test at 0x00000235350A7F28>}
2. dump && load
import pickle def test(name): print("hello,{}".format(name)) info = { 'name': 'The Count of Monte Cristo', 'type': 'Movie', 'func': test } with open('test.txt', 'wb') as f: pickle.dump(info, f) # 写入test.txt文件中的内容 �}q (X typeqX MovieqX funcqc__main__ test qX nameqX The Count of Monte Cristoqu.
import pickle with open('test.txt', 'rb') as f: get_data = pickle.load(f) print(get_data) # 输出 {'name': 'The Count of Monte Cristo', 'func': <function test at 0x000001BA2AB4D510>, 'type': 'Movie'}
Summary:
JSON values support simple data types, and pickle supports all data types.
pickle can only support serialization and deserialization of python itself, and cannot be used for data interaction with other languages, while json can.
pickle serializes the entire data object, so when deserializing a function, the logic in the function body changes and follows the original function body.
The above is the detailed content of In-memory data serialization example. For more information, please follow other related articles on the PHP Chinese website!

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Atom editor mac version download
The most popular open source editor

WebStorm Mac version
Useful JavaScript development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
