This article mainly introduces Python's method of reading the last n lines of a file, involving Python's operating skills related to file reading, traversal and operation. Friends in need can refer to the above
# -*- coding:utf8-*- import os import time import datetime import math import string def get_last_line(inputfile) : filesize = os.path.getsize(inputfile) blocksize = 1024 dat_file = open(inputfile, 'r') last_line = "" lines = dat_file.readlines() count = len(lines) if count>60: num=60 else: num=count i=1; lastre = [] for i in range(1,(num+1)): if lines : n = -i last_line = lines[n].strip() #print "last line : ", last_line dat_file.close() #print i lastre.append(last_line) return lastre #获取最后一行的结果 re = get_last_line('../update/log/rtime/rtime20130805.log') print len(re) for n in re: strlist = n.split(' ') if strlist[1] == 'ok' and string.atoi(strlist[2])>1000: print '数据条数正常' print 'OK' else: print '数据太少,检查发邮件'
And the log file format is
2013-08-05 16:09:30 ok 1673 2013-08-05 16:10:34 ok 1628 2013-08-05 16:11:55 ok 71 2013-08-05 16:13:02 ok 1441 2013-08-05 16:14:06 ok 1634 2013-08-05 16:15:10 ok 1717 2013-08-05 16:16:14 ok 1687 2013-08-05 16:17:18 ok 1642 2013-08-05 16:18:27 ok 1655 2013-08-05 16:19:33 ok 1655
Read the last line:
#返回文件最后一行函数 def get_last_line(inputfile) : filesize = os.path.getsize(inputfile) blocksize = 1024 dat_file = open(inputfile, 'r') last_line = "" if filesize > blocksize : maxseekpoint = (filesize // blocksize) dat_file.seek((maxseekpoint-1)*blocksize) elif filesize : #maxseekpoint = blocksize % filesize dat_file.seek(0, 0) lines = dat_file.readlines() if lines : last_line = lines[-1].strip() #print "last line : ", last_line dat_file.close() return last_line
[Related recommendations]
2. Application of Python in Data Science
The above is the detailed content of Python code example of reading n lines after the file. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
