Since I started learning Python I decided to maintain a list of frequently used "tips". Whenever I see a piece of code that makes me think "Cool, this works!" (in an example, on StackOverflow, in open source software, etc.), I try it until I understand it, and then Add it to the list. This post is part of a cleaned up list. If you are an experienced Python programmer, although you may already know some, you may still discover some you don't know. If you are a C, C++, or Java programmer who is learning Python, or just starting to learn programming, then you will find many of them very useful like I did.
Each trick or language feature can only be verified through examples without excessive explanation. While I've tried to make the examples clear, some of them will still look a little complicated, depending on your familiarity. So if you're not sure after looking at the example, the title can provide enough information for you to get the detailed content through Google.
The list is sorted by difficulty, with commonly used language features and techniques at the front.
1.1 Split
>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a , b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4
1.2 Exchange Variable split
>>> a, b = 1, 2
>>> a, b = b, a
>> ;> a, b
(2, 1)
1.3 Expansion and splitting (applicable under Python 3)
>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5
1.4 Negative index
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8
1.5 List slicing (a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8 ]
[2, 3, 4, 5, 6, 7]
1.6 List slicing using negative index
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8 ]
1.7 List slice with step value (a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8: 2]
[2, 4, 6]
1.8 Negative step value list slicing
>>> a = [0, 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6 , 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0 ]
1.9 List slice assignment
>>> a = [1, 2, 3, 4, 5]
>>> a[ 2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
> >> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]
1.10 Named slice (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
> ;>> a[LASTTHREE]
[3, 4, 5]
1.11 zipPackaging and unpacking list and multiples
> >> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>> > z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, ' c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]
1.12 使用zip合并相邻的列表项
>>> a = [1, 2, 3, 4, 5, 6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]
>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
1.13 使用zip和iterators生成滑动窗口 (n -grams)
>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
The above is the detailed content of 30 must-see features and skills of the Python language (1). For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
