search
HomeBackend DevelopmentPython TutorialDetailed explanation of several methods of dictionaries in Python

Create dictionary

>>> phonebook={'Alice':'2897','Alan':'0987','Jery':'6754'}

dict function

>>> items=[('name','Gumby'),('age',42)]
>>> d=dict(items)
>>> d
{'age': 42, 'name': 'Gumby'}
>>> d['name']
'Gumby'
>>> d=dict(name='July',age=24)
>>> d
{'age': 24, 'name': 'July'}

Basic dictionary operations (mostly similar to sequences)

len(d) returns the number of items (key-value pairs) in d

d[k] returns the number associated with the key The value on k

d[k]=v associates the value v to k

del d[k] deletes the item with key k

k in d checks if there is an item with key k in d

Format string

>>> phonebook
{'Jery': '6754', 'Alice': '2897', 'Alan': '0987'}
>>> "Alan's phone number is %(Alan)s." % phonebook
"Alan's phone number is 0987."

Methods:

clear Clear all items in the dictionary

>>> d={}
>>> d['name']='Gumby'
>>> d['age']=42
>>> d
{'age': 42, 'name': 'Gumby'}
>>> d.clear()
>>> d
{}

>>> x={}
>>> y=x #x和y对应同一个字典
>>> x['key']='value'
>>> y
{'key': 'value'}
>>> x={} #x关联到新的空字典
>>> y
{'key': 'value'}

>>> x={}
>>> y=x
>>> x['key']='value'
>>> y
{'key': 'value'}
>>> x.clear()
>>> y
{}

copy Return a new dictionary with the same key-value pairs (shallow copy)

>>> x={'name':'admin','machines':['foo','bar','bax']}
>>> y=x.copy()
>>> y['name']='yhk' #替换值,原字典不受影响
>>> y['machines'].remove('bar') #修改了某个值(原地修改不是替换),原字典会改变
>>> y
{'name': 'yhk', 'machines': ['foo', 'bax']}
>>> x
{'name': 'admin', 'machines': ['foo', 'bax']}

deepcopy Deep copy

>>> from copy import deepcopy
>>> d={}
>>> d['name']=['Aly','Bob']
>>> c=d.copy()
>>> e=deepcopy(d)
>>> d['name'].append('Ageal')
>>> c
{'name': ['Aly', 'Bob', 'Ageal']}
>>> e
{'name': ['Aly', 'Bob']}

fromkeys using the given Create a new dictionary with the key, and the default corresponding value of each key is none

>>> {}.fromkeys(['name','age'])
{'age': None, 'name': None}
>>> dict.fromkeys(['name','age'])
{'age': None, 'name': None}
>>> dict.fromkeys(['name','age'],'(unknown)')
{'age': '(unknown)', 'name': '(unknown)'}

get accesses the dictionary item

>>> d={}
>>> print d['name']

Traceback (most recent call last):
  File "<pyshell#60>", line 1, in <module>
    print d[&#39;name&#39;]
KeyError: &#39;name&#39;
>>> print d.get(&#39;name&#39;)
None
>>> d.get(&#39;name&#39;,&#39;N/A&#39;)
&#39;N/A&#39;
>>> d[&#39;name&#39;]=&#39;Eric&#39;
>>> d.get(&#39;name&#39;)
&#39;Eric&#39;

has_key to check whether there is the given key in the dictionary (python3.0 does not have this function)

>>> d={}
>>> d.has_key(&#39;name&#39;)
False
>>> d[&#39;name&#39;]=&#39;Eric&#39;
>>> d.has_key(&#39;name&#39;)
True

items and iteritems

items returns all dictionary items as a list, each item in these list items comes from (key, value)

iteritems returns an iterator object

>>> d={&#39;title&#39;:&#39;My Time!&#39;,&#39;url&#39;:&#39;http://www,python.org&#39;,&#39;spam&#39;:0}
>>> d.items()
[(&#39;url&#39;, &#39;http://www,python.org&#39;), (&#39;spam&#39;, 0), (&#39;title&#39;, &#39;My Time!&#39;)]
>>> s=d.iteritems()
>>> s
<dictionary-itemiterator object at 0x0000000003068728>
>>> list(s)
[(&#39;url&#39;, &#39;http://www,python.org&#39;), (&#39;spam&#39;, 0), (&#39;title&#39;, &#39;My Time!&#39;)]

keys and iterkeys keys return the keys in the dictionary Returns as a list iterkeys returns an iterator over the key

pop removes

>>> d={&#39;x&#39;:1,&#39;y&#39;:2}
>>> d.pop(&#39;x&#39;)
>>> d
{&#39;y&#39;: 2}

popitem removes a random item

>>> d={&#39;x&#39;:1,&#39;y&#39;:2}
>>> d.popitem()
(&#39;y&#39;, 2)
>>> d
{&#39;x&#39;: 1}

setdefault When the key does not exist, returns the default value and updates the corresponding dictionary

>>> d={}
>>> d.setdefault(&#39;name&#39;,&#39;N/A&#39;)
&#39;N/A&#39;
>>> d
{&#39;name&#39;: &#39;N/A&#39;}
>>> d[&#39;name&#39;]=&#39;Gumby&#39;
>>> d.setdefault(&#39;name&#39;,&#39;N/A&#39;)
&#39;Gumby&#39;
>>> d
{&#39;name&#39;: &#39;Gumby&#39;}

update utilizes a dictionary item Update another dictionary

>>> d={&#39;x&#39;:1,&#39;y&#39;:2,&#39;z&#39;:3}
>>> f={&#39;y&#39;:5}
>>> d.update(f)
>>> d
{&#39;y&#39;: 5, &#39;x&#39;: 1, &#39;z&#39;: 3}

values ​​and itervalues ​​alues ​​return the value in the dictionary (itervalues ​​returns the iterator of the value)

>>> d={}
>>> d[1]=1
>>> d[2]=2
>>> d[3]=3
>>> d.values()
[1, 2, 3]


The above is the detailed content of Detailed explanation of several methods of dictionaries in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are some common operations that can be performed on Python arrays?What are some common operations that can be performed on Python arrays?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

In what types of applications are NumPy arrays commonly used?In what types of applications are NumPy arrays commonly used?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

When would you choose to use an array over a list in Python?When would you choose to use an array over a list in Python?Apr 26, 2025 am 12:12 AM

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

Are all list operations supported by arrays, and vice versa? Why or why not?Are all list operations supported by arrays, and vice versa? Why or why not?Apr 26, 2025 am 12:05 AM

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

How do you access elements in a Python list?How do you access elements in a Python list?Apr 26, 2025 am 12:03 AM

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.