Home  >  Article  >  Backend Development  >  Analysis and summary of methods for finding arithmetic square roots and divisors in Python

Analysis and summary of methods for finding arithmetic square roots and divisors in Python

高洛峰
高洛峰Original
2017-03-07 15:56:042231browse

This article mainly introduces the relevant information summarized in Python's method of finding square roots and divisors of arithmetic numbers. Friends in need can refer to it

1. Find the arithmetic square root

a=
x=int(raw_input('Enter a number:'))
if x >= :
while a*a < x:
a = a + 
if a*a != x:
print x,&#39;is not a perfect square&#39;
else:
print a
else:
print x,&#39;is a negative number&#39;

2. Find the divisor

Method one:

pisor = [ ]
x=int(raw_input(&#39;Enter a number:&#39;))
i= 
while i<=x: 
if x%i ==:
pisor.append(i)
i = i +
print &#39;pisor:&#39;,pisor

Method two:

pisor = [ ]
x=int(raw_input(&#39;Enter a number:&#39;))
for i in range(,x+):
if x%i ==:
pisor.append(i) # 此行也可以换成 pisor = pisor + [i]
print &#39;pisor:&#39;,pisor

Let me introduce you to the Python sqrt() function

Description

sqrt() method returns the square root of the number x.

Syntax

The following is the syntax of the sqrt() method:

import math
math.sqrt( x )


Note: sqrt() cannot be accessed directly. You need to import the math module and call this method through a static object.

Parameters

x -- Numeric expression.

Return value

Returns the square root of the number x.

Example

The following shows an example of using the sqrt() method:

#!/usr/bin/python
import math # This will import math module
print "math.sqrt(100) : ", math.sqrt(100)
print "math.sqrt(7) : ", math.sqrt(7)
print "math.sqrt(math.pi) : ", math.sqrt(math.pi)

Above After running the example, the output result is:

math.sqrt(100) : 10.0
math.sqrt(7) : 2.64575131106
math.sqrt(math.pi) : 1.77245385091

For more analysis and summary of Python methods for finding square roots and divisors of arithmetic, please pay attention to the PHP Chinese website for related articles!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn