search
HomeBackend DevelopmentPython TutorialDetailed explanation of how Python calls C++ programs

Preface

Everyone knows that the advantages of Python are high development efficiency and ease of use, while C++ has high operating efficiency. The two can complement each other, whether in Python If you embed C++ code in a project, or use Python to implement peripheral functions in a C++ project, you may encounter the need for Python to call C++ modules. Here are several basic methods for exporting C++ code into Python interfaces. Let’s learn together. .

Original export

The Python interpreter is implemented in C, so as long as our C++ data structure can be understood by Python , in theory, it can be called directly. We implement test1.cpp as follows

#include <Python.h>

int Add(int x, int y)
{
 return x + y;
}

int Del(int x, int y)
{
 return x - y;
}

PyObject* WrappAdd(PyObject* self, PyObject* args)
{
 int x, y;
 if (!PyArg_ParseTuple(args, "ii", &x, &y))
 {
  return NULL;
 }
 return Py_BuildValue("i", Add(x, y));
}

PyObject* WrappDel(PyObject* self, PyObject* args)
{
 int x, y;
 if (!PyArg_ParseTuple(args, "ii", &x, &y))
 {
  return NULL;
 }
 return Py_BuildValue("i", Del(x, y));
}
static PyMethodDef test_methods[] = {
 {"Add", WrappAdd, METH_VARARGS, "something"},
 {"Del", WrappDel, METH_VARARGS, "something"},
 {NULL, NULL}
};

extern "C"
void inittest1()
{
 Py_InitModule("test1", test_methods);
}

The compilation command is as follows

g++ -fPIC -shared test1.cpp -I/usr/include/python2.6 -o test1.so

Run Python interpretation The test is as follows

>>> import test1
>>> test1.Add(1,2)
3

There are a few points to note here

  1. If the name of the generated dynamic library is test1, the source file must have the inittest1 function, and the first parameter of Py_InitModule must be "test1", otherwise the Python import module will fail

  2. If it is a cpp source file, the inittest1 function must be modified with extern "C". If it is a c source file, it is not required. The reason is that the Python interpreter will look for functions such as initxxx when importing libraries, and C and C++ encode function symbols differently. C++ will consider the function length and parameter type when encoding function symbols. Specifically, you can use nm test1.soView function symbols, the c++filt tool can decode the function prototype through symbols

Achieved through boost

We use the same example as above to implement test2.cpp as follows

#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
using namespace boost::python;

int Add(const int x, const int y)
{
 return x + y;
}

int Del(const int x, const int y)
{
 return x - y;
}

BOOST_PYTHON_MODULE(test2)
{
 def("Add", Add);
 def("Del", Del);
}

The parameters of BOOST_PYTHON_MODULE are The module name to be exported

The compilation command is as follows

g++ test2.cpp -fPIC -shared -o test2.so -I/usr/include/python2.6 -I/usr/local/include -L/usr/local/lib -lboost_python

Note: is required during compilation Specify the paths to the boost header files and libraries, here they are /usr/local/include and /usr/local/lib

or export the module through setup.py

#!/usr/bin/env python
from distutils.core import setup
from distutils.extension import Extension

setup(name="PackageName",
 ext_modules=[
  Extension("test2", ["test2.cpp"],
  libraries = ["boost_python"])
 ])

The first parameter of Extension is the module name, and the second parameter is the file name

Execute the following command

python setup.py build

The build directory will be generated at this time, find test2.so inside, and enter the same level directory, verify as follows

>>> import test2
>>> test2.Add(1,2)
3
>>> test2.Del(1,2)
-1

Export class

test3.cpp is implemented as follows

#include <boost/python.hpp>
using namespace boost::python;

class Test
{
public:
 int Add(const int x, const int y)
 {
  return x + y;
 }

 int Del(const int x, const int y)
 {
  return x - y;
 }
};

BOOST_PYTHON_MODULE(test3)
{
 class_<Test>("Test")
  .def("Add", &Test::Add)
  .def("Del", &Test::Del);
}

##Note: How to use .def in BOOST_PYTHON_MODULE Somewhat similar to Python's syntax, it is equivalent to

class_<Test>("Test").def("Add", &Test::Add);
class_<Test>("Test").def("Del", &Test::Del);

The compilation command is as follows

g++ test3.cpp -fPIC -shared -o test3.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python

Test As follows

>>> import test3
>>> test = test3.Test()
>>> test.Add(1,2)
3
>>> test.Del(1,2)
-1

Export variable parameter function

test4.cpp is implemented as follows

#include <boost/python.hpp>
using namespace boost::python;

class Test
{
public:
 int Add(const int x, const int y, const int z = 100)
 {
  return x + y + z;
 }
};

int Del(const int x, const int y, const int z = 100)
{
 return x - y - z;
}

BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(Add_member_overloads, Add, 2, 3)
BOOST_PYTHON_FUNCTION_OVERLOADS(Del_overloads, Del, 2, 3)

BOOST_PYTHON_MODULE(test4)
{
 class_<Test>("Test")
  .def("Add", &Test::Add, Add_member_overloads(args("x", "y", "z"), "something"));
 def("Del", Del, Del_overloads(args("x", "y", "z"), "something"));
}

Both the Add and Del functions here use default parameters. Del is an ordinary function and Add is a class member function. Different macros are called here. Macros The last two parameters represent the minimum number of parameters and the maximum number of parameters of the function respectively

The compilation command is as follows

g++ test4.cpp -fPIC -shared -o test4.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python

The test is as follows

>>> import test4
>>> test = test4.Test()
>>> print test.Add(1,2)
103
>>> print test.Add(1,2,z=3)
6
>>> print test4.Del(1,2)
-1
>>> print test4.Del(1,2,z=3)
-1

##Export an interface with Python objects
Since it is exported as a Python interface , the caller will inevitably use Python-specific data structures, such as tuple, list, dict. Since the original ecological method is too troublesome, only the usage of boost is recorded here. Assume that the following Python function functions are to be implemented

def Square(list_a)
{
 return [x * x for x in list_a]
}

That is, calculate the square of each element of the incoming list and return the result of list type

The code is as follows

#include <boost/python.hpp>

boost::python::list Square(boost::python::list& data)
{
 boost::python::list ret;
 for (int i = 0; i < len(data); ++i)
 {
  ret.append(data[i] * data[i]);
 }

 return ret;
}

BOOST_PYTHON_MODULE(test5)
{
 def("Square", Square);
}

The compilation command is as follows

g++ test5.cpp -fPIC -shared -o test5.so -I/usr/include/python2.6 -I/usr/local/include/boost -L/usr/local/lib -lboost_python

The test is as follows

>>> import test5
>>> test5.Square([1,2,3])
[1, 4, 9]

boost implementation Here are the data types of

boost::python::tuple

, boost::python::list, boost::python::dict, how to use them It is basically consistent with Python. For specific methods, you can view boost/python/tuple.hpp and other corresponding files in the boost header file. Another commonly used function is

boost::python::make_tuple( )

, the usage method is as follows

boost::python::tuple(int a, int b, int c)
{
 return boost::python::make_tuple(a, b, c);
}

For more detailed explanations on how Python calls C++ programs, please pay attention to the PHP Chinese website for related articles!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Professional Error Handling With PythonProfessional Error Handling With PythonMar 04, 2025 am 10:58 AM

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.