Requirements
Sometimes we need to have several different masters, and they need to exchange topic content. At this time, we cannot use the method of setting the same master that comes with ros.
Our approach is to construct a The client and a server run under different masters. The client subscribes to topic1 under master1, and then sends it to the server under master2 through the tcp protocol (defines a message protocol format by itself), performs message parsing, and then publishes topic1 under master2. , so that we can achieve the propagation of topic1 messages from master1 to master2 without changing the topic framework that comes with ros.
What we implement below is to pass an amcl_pose topic, the message type is PoseWithCovarianceStamped from master1 to master2, and other topics The code is similar to
client’s code
#! /usr/bin/env python# -*- coding=utf-8 -*-import socketimport structimport rospyimport timefrom geometry_msgs.msg import PoseWithCovarianceStamped,PoseStamped#message proto# id | length | datadef send_msg(sock, msg ,id): # Prefix each message with a 4-byte id and length (network byte order) msg = struct.pack('>I',int(id)) + struct.pack('>I', len(msg)) + msg sock.sendall(msg)def odomCallback(msg): global odom_socket data = "" id = msg.header.seq print "send id: ",id x = msg.pose.pose.position.x y = msg.pose.pose.position.y #orientation orien_z = msg.pose.pose.orientation.z orien_w = msg.pose.pose.orientation.w data += str(x) + "," + str(y)+ "," + str(orien_z)+ "," + str(orien_w) send_msg(odom_socket,data,id) odom_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) odom_socket.connect(('127.0.0.1',8000)) rospy.init_node('server_node') rospy.Subscriber('/amcl_pose',PoseWithCovarianceStamped,odomCallback) rospy.spin()
server’s code
#! /usr/bin/env python# -*- coding=utf-8 -*-import socketimport time,os,fcntlimport structimport rospyfrom geometry_msgs.msg import PoseWithCovarianceStamped,PoseStamped#message proto# id | length | datadef recv_msg(sock): try: # Read message length and unpack it into an integer raw_id = recvall(sock, 4) if not raw_id: return None id = struct.unpack('>I', raw_id)[0] print "receive id: ",id raw_msglen = recvall(sock, 4) if not raw_msglen: return None msglen = struct.unpack('>I', raw_msglen)[0] # Read the message data return recvall(sock, msglen) except Exception ,e: return Nonedef recvall(sock, n): # Helper function to recv n bytes or return None if EOF is hit data = '' while len(data) < n: packet = sock.recv(n - len(data)) if not packet: return None data += packet return data##把接受的数据重新打包成ros topic发出去def msg_construct(data): list = data.split(',') pose = PoseWithCovarianceStamped() pose.header.stamp = rospy.Time.now() pose.header.frame_id = "/map" pose.pose.pose.position.x = float(list[0]) pose.pose.pose.position.y = float(list[1]) pose.pose.pose.position.z = 0 pose.pose.pose.orientation.x = 0 pose.pose.pose.orientation.y = 0 pose.pose.pose.orientation.z = float(list[2]) pose.pose.pose.orientation.w = float(list[3]) pose.pose.covariance = [0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06853891945200942] return pose#初始化socket,监听8000端口odom_socket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) odom_socket.bind(('',8000)) odom_socket.listen(10) (client,address) = odom_socket.accept() rospy.init_node("client_node") odom_pub = rospy.Publisher("/amcl_pose",PoseWithCovarianceStamped,queue_size=30) r = rospy.Rate(1000)#设置noblock,否则会阻塞在接听,下面while不会一直循环,只有在有数据才进行下一次循环fcntl.fcntl(client, fcntl.F_SETFL, os.O_NONBLOCK)while not rospy.is_shutdown(): data = recv_msg(client) if data: odom_pub.publish(msg_construct(data)) r.sleep()
Conclusion
The above code has been tested in the local area network, and it can ensure that no data is lost when sending images and laser data.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Atom editor mac version download
The most popular open source editor

WebStorm Mac version
Useful JavaScript development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
