


PHP+JS+rsa data encryption transmission implementation code_PHP tutorial
JS side code:
//文件base64.js:
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";
function hex2b64(h) {
var i;
var c;
var ret = "";
for(i = 0; i+3 c = parseInt(h.substring(i,i+3),16);
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
}
if(i+1 == h.length) {
c = parseInt(h.substring(i,i+1),16);
ret += b64map.charAt(c }
else if(i+2 == h.length) {
c = parseInt(h.substring(i,i+2),16);
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) }
while((ret.length & 3) > 0) ret += b64pad;
return ret;
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = ""
var i;
var k = 0; // b64 state, 0-3
var slop;
for(i = 0; i if(s.charAt(i) == b64pad) break;
v = b64map.indexOf(s.charAt(i));
if(v if(k == 0) {
ret += int2char(v >> 2);
slop = v & 3;
k = 1;
}
else if(k == 1) {
ret += int2char((slop > 4));
slop = v & 0xf;
k = 2;
}
else if(k == 2) {
ret += int2char(slop);
ret += int2char(v >> 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop > 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if(k == 1)
ret += int2char(slop return ret;
}
// convert a base64 string to a byte/number array
function b64toBA(s) {
//piggyback on b64tohex for now, optimize later
var h = b64tohex(s);
var i;
var a = new Array();
for(i = 0; 2*i a[i] = parseInt(h.substring(2*i,2*i+2),16);
}
return a;
}
#文件jsbn.js
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c // We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be // on values up to 2*hdvalue^2-hdvalue-1 (function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x>>15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]>>15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x>>14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]>>14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)c = (l>>28)+(m>>14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1BigInteger.prototype.DV = (1var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv rr = "a".charCodeAt(0);
for(vv = 10; vv rr = "A".charCodeAt(0);
for(vv = 10; vv function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV function bnpFromInt(x) {
this.t = 1;
this.s = (xif(x > 0) this[0] = x;
else if(x else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1this[this.t++] = (x>>(this.DB-sh));
}
else
this[this.t-1] |= xsh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p >p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p d = (this[i]&((1d |= this[--i]>>(p+=this.DB-k);
}
else {
d = (this[i]>>(p-=k))&km;
if(p }
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s// (public) return + if this > a, - if this function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1var ds = Math.floor(n/this.DB), c = (this.sfor(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]>>cbs)|c;
c = (this[i]&bm)}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1r[0] = this[ds]>>bs;
for(var i = ds+1; i r[i-ds-1] |= (this[i]&bm)r[i-ds] = this[i]>>bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i c += this[i]-a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t c -= a.s;
while(i c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i c -= a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (cif(c else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t var pt = this.abs();
if(pt.t if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(11)?y[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] }
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts }
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s = 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t x[x.t++] = 0;
for(var i = 0; i // faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e function bnpExp(e,z) {
if(e > 0xffffffff || e var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 function bnModPowInt(e,m) {
var z;
if(e return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
#文件prng4.js
// prng4.js - uses Arcfour as a PRNG
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for(i = 0; i this.S[i] = i;
j = 0;
for(i = 0; i j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour();
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
文件:rng.js
// Random number generator - requires a PRNG backend, e.g. prng4.js
// For best results, put code like
//
// in your main HTML document.
var rng_state;
var rng_pool;
var rng_pptr;
// Mix in a 32-bit integer into the pool
function rng_seed_int(x) {
rng_pool[rng_pptr++] ^= x & 255;
rng_pool[rng_pptr++] ^= (x >> 8) & 255;
rng_pool[rng_pptr++] ^= (x >> 16) & 255;
rng_pool[rng_pptr++] ^= (x >> 24) & 255;
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}
// Mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
rng_seed_int(new Date().getTime());
}
// Initialize the pool with junk if needed.
if(rng_pool == null) {
rng_pool = new Array();
rng_pptr = 0;
var t;
if(navigator.appName == "Netscape" && navigator.appVersion // Extract entropy (256 bits) from NS4 RNG if available
var z = window.crypto.random(32);
for(t = 0; t rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
}
while(rng_pptr t = Math.floor(65536 * Math.random());
rng_pool[rng_pptr++] = t >>> 8;
rng_pool[rng_pptr++] = t & 255;
}
rng_pptr = 0;
rng_seed_time();
//rng_seed_int(window.screenX);
//rng_seed_int(window.screenY);
}
function rng_get_byte() {
if(rng_state == null) {
rng_seed_time();
rng_state = prng_newstate();
rng_state.init(rng_pool);
for(rng_pptr = 0; rng_pptr rng_pool[rng_pptr] = 0;
rng_pptr = 0;
//rng_pool = null;
}
// TODO: allow reseeding after first request
return rng_state.next();
}
function rng_get_bytes(ba) {
var i;
for(i = 0; i }
function SecureRandom() {}
SecureRandom.prototype.nextBytes = rng_get_bytes;
#文件:rsa.js
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parseBigInt(str,r) {
return new BigInteger(str,r);
}
function linebrk(s,n) {
var ret = "";
var i = 0;
while(i + n ret += s.substring(i,i+n) + "n";
i += n;
}
return ret + s.substring(i,s.length);
}
function byte2Hex(b) {
if(b return "0" + b.toString(16);
else
return b.toString(16);
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
if(n alert("Message too long for RSA");
return null;
}
var ba = new Array();
var i = s.length - 1;
while(i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if(c ba[--n] = c;
}
else if((c > 127) && (c ba[--n] = (c & 63) | 128;
ba[--n] = (c >> 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c >> 6) & 63) | 128;
ba[--n] = (c >> 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = new Array();
while(n > 2) { // random non-zero pad
x[0] = 0;
while(x[0] == 0) rng.nextBytes(x);
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
// "empty" RSA key constructor
function RSAKey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}
// Set the public key fields N and e from hex strings
function RSASetPublic(N,E) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
}
else
alert("Invalid RSA public key");
}
// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
return x.modPowInt(this.e, this.n);
}
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
if(m == null) return null;
var c = this.doPublic(m);
if(c == null) return null;
var h = c.toString(16);
if((h.length & 1) == 0) return h; else return "0" + h;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
//}
// protected
RSAKey.prototype.doPublic = RSADoPublic;
// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
HTML代码部分:
后端PHP部分:
RSA库:
/*
* PHP implementation of the RSA algorithm
* (C) Copyright 2004 Edsko de Vries, Ireland
*
* Licensed under the GNU Public License (GPL)
*
* This implementation has been verified against [3]
* (tested Java/PHP interoperability).
*
* References:
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,
* (open source cryptography library for Java, online)
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,
* version 1.5, revised November 1, 1993
*/
/*
* Functions that are meant to be used by the user of this PHP module.
*
* Notes:
* - $key and $modulus should be numbers in (decimal) string format
* - $message is expected to be binary data
* - $keylength should be a multiple of 8, and should be in bits
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed
* ($keylength / 8) - 11 (as mandated by [4]).
* - rsa_encrypt and rsa_sign will automatically add padding to the message.
* For rsa_encrypt, this padding will consist of random values; for rsa_sign,
* padding will consist of the appropriate number of 0xFF values (see [4])
* - rsa_decrypt and rsa_verify will automatically remove message padding.
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly
* ($keylength / 8) bytes long.
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign
* expect a private key.
*/
/**
* Modified by LONELY at 2010-11-12 1:06
*/
function rsa_encrypt($message, $public_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, true, $keylength / 8);
$number = binary_to_number($padded);
$encrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($encrypted, $keylength / 8);
return $result;
}
function rsa_decrypt($message, $private_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_PKCS1_padding($result, $keylength / 8);
}
function rsa_sign($message, $private_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, false, $keylength / 8);
$number = binary_to_number($padded);
$signed = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($signed, $keylength / 8);
return $result;
}
function rsa_verify($message, $public_key, $modulus, $keylength)
{
return rsa_decrypt($message, $public_key, $modulus, $keylength);
}
function rsa_kyp_verify($message, $public_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_KYP_padding($result, $keylength / 8);
}
/*
* Some constants
*/
define("BCCOMP_LARGER", 1);
/*
* The actual implementation.
* Requires BCMath support in PHP (compile with --enable-bcmath)
*/
//--
// Calculate (p ^ q) mod r
//
// We need some trickery to [2]:
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA
// applications, (p ^ q) is going to be _WAY_ too large.
// (I mean, __WAY__ too large - won't fit in your computer's memory.)
// (b) Still be reasonably efficient.
//
// We assume p, q and r are all positive, and that r is non-zero.
//
// Note that the more simple algorithm of multiplying $p by itself $q times, and
// applying "mod $r" at every step is also valid, but is O($q), whereas this
// algorithm is O(log $q). Big difference.
//
// As far as I can see, the algorithm I use is optimal; there is no redundancy
// in the calculation of the partial results.
//--
function pow_mod($p, $q, $r)
{
// Extract powers of 2 from $q
$factors = array();
$div = $q;
$power_of_two = 0;
while(bccomp($div, "0") == BCCOMP_LARGER)
{
$rem = bcmod($div, 2);
$div = bcdiv($div, 2);
if($rem) array_push($factors, $power_of_two);
$power_of_two++;
}
// Calculate partial results for each factor, using each partial result as a
// starting point for the next. This depends of the factors of two being
// generated in increasing order.
$partial_results = array();
$part_res = $p;
$idx = 0;
foreach($factors as $factor)
{
while($idx {
$part_res = bcpow($part_res, "2");
$part_res = bcmod($part_res, $r);
$idx++;
}
array_push($partial_results, $part_res);
}
// Calculate final result
$result = "1";
foreach($partial_results as $part_res)
{
$result = bcmul($result, $part_res);
$result = bcmod($result, $r);
}
return $result;
}
//--
// Function to add padding to a decrypted string
// We need to know if this is a private or a public key operation [4]
//--
function add_PKCS1_padding($data, $isPublicKey, $blocksize)
{
$pad_length = $blocksize - 3 - strlen($data);
if($isPublicKey)
{
$block_type = "x02";
$padding = "";
for($i = 0; $i {
$rnd = mt_rand(1, 255);
$padding .= chr($rnd);
}
}
else
{
$block_type = "x01";
$padding = str_repeat("xFF", $pad_length);
}
return "x00" . $block_type . $padding . "x00" . $data;
}
//--
// Remove padding from a decrypted string
// See [4] for more details.
//--
function remove_PKCS1_padding($data, $blocksize)
{
//以下部分于原版的RSA有所不同,修复了原版的一个BUG
//assert(strlen($data) == $blocksize);
$data = substr($data, 1);
// We cannot deal with block type 0
if($data{0} == '

Reasons for PHPSession failure include configuration errors, cookie issues, and session expiration. 1. Configuration error: Check and set the correct session.save_path. 2.Cookie problem: Make sure the cookie is set correctly. 3.Session expires: Adjust session.gc_maxlifetime value to extend session time.

Methods to debug session problems in PHP include: 1. Check whether the session is started correctly; 2. Verify the delivery of the session ID; 3. Check the storage and reading of session data; 4. Check the server configuration. By outputting session ID and data, viewing session file content, etc., you can effectively diagnose and solve session-related problems.

Multiple calls to session_start() will result in warning messages and possible data overwrites. 1) PHP will issue a warning, prompting that the session has been started. 2) It may cause unexpected overwriting of session data. 3) Use session_status() to check the session status to avoid repeated calls.

Configuring the session lifecycle in PHP can be achieved by setting session.gc_maxlifetime and session.cookie_lifetime. 1) session.gc_maxlifetime controls the survival time of server-side session data, 2) session.cookie_lifetime controls the life cycle of client cookies. When set to 0, the cookie expires when the browser is closed.

The main advantages of using database storage sessions include persistence, scalability, and security. 1. Persistence: Even if the server restarts, the session data can remain unchanged. 2. Scalability: Applicable to distributed systems, ensuring that session data is synchronized between multiple servers. 3. Security: The database provides encrypted storage to protect sensitive information.

Implementing custom session processing in PHP can be done by implementing the SessionHandlerInterface interface. The specific steps include: 1) Creating a class that implements SessionHandlerInterface, such as CustomSessionHandler; 2) Rewriting methods in the interface (such as open, close, read, write, destroy, gc) to define the life cycle and storage method of session data; 3) Register a custom session processor in a PHP script and start the session. This allows data to be stored in media such as MySQL and Redis to improve performance, security and scalability.

SessionID is a mechanism used in web applications to track user session status. 1. It is a randomly generated string used to maintain user's identity information during multiple interactions between the user and the server. 2. The server generates and sends it to the client through cookies or URL parameters to help identify and associate these requests in multiple requests of the user. 3. Generation usually uses random algorithms to ensure uniqueness and unpredictability. 4. In actual development, in-memory databases such as Redis can be used to store session data to improve performance and security.

Managing sessions in stateless environments such as APIs can be achieved by using JWT or cookies. 1. JWT is suitable for statelessness and scalability, but it is large in size when it comes to big data. 2.Cookies are more traditional and easy to implement, but they need to be configured with caution to ensure security.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Atom editor mac version download
The most popular open source editor
