search
HomeBackend DevelopmentPython TutorialSimple examples of common Python regular usage

下面列出Python正则表达式的几种匹配用法:

1.测试正则表达式是否匹配字符串的全部或部分

regex=ur"" #正则表达式
if re.search(regex, subject):
do_something()
else:
do_anotherthing()

2.测试正则表达式是否匹配整个字符串

regex=ur"\Z" #正则表达式末尾以\Z结束
if re.match(regex, subject):
    do_something()
else:
    do_anotherthing()

3.创建一个匹配对象,然后通过该对象获得匹配细节(Create an object with details about how the regex matches (part of) a string)

regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
    # match start: match.start()
    # match end (exclusive): atch.end()
    # matched text: match.group()
    do_something()
else:
    do_anotherthing()

4.获取正则表达式所匹配的子串(Get the part of a string matched by the regex)

regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
    result = match.group()
else:
    result = ""

5. 获取捕获组所匹配的子串(Get the part of a string matched by a capturing group)

regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
    result = match.group(1)
else:
    result = ""

6. 获取有名组所匹配的子串(Get the part of a string matched by a named group)

regex=ur"" #正则表达式
match = re.search(regex, subject)
if match:
result = match.group"groupname")
else:
result = ""

7. 将字符串中所有匹配的子串放入数组中(Get an array of all regex matches in a string)

result = re.findall(regex, subject)

8.遍历所有匹配的子串(Iterate over all matches in a string)

for match in re.finditer(r"<(.*&#63;)\s*.*&#63;/\1>", subject)
    # match start: match.start()
    # match end (exclusive): atch.end()
    # matched text: match.group()

9.通过正则表达式字符串创建一个正则表达式对象(Create an object to use the same regex for many operations)

reobj = re.compile(regex)

10.用法1的正则表达式对象版本(use regex object for if/else branch whether (part of) a string can be matched)

reobj = re.compile(regex)
if reobj.search(subject):
    do_something()
else:
    do_anotherthing()

11.用法2的正则表达式对象版本(use regex object for if/else branch whether a string can be matched entirely)

reobj = re.compile(r"\Z") #正则表达式末尾以\Z 结束
if reobj.match(subject):
    do_something()
else:
    do_anotherthing()

12.创建一个正则表达式对象,然后通过该对象获得匹配细节(Create an object with details about how the regex object matches (part of) a string)

reobj = re.compile(regex)
match = reobj.search(subject)
if match:
    # match start: match.start()
    # match end (exclusive): atch.end()
    # matched text: match.group()
    do_something()
else:
    do_anotherthing()

13.用正则表达式对象获取匹配子串(Use regex object to get the part of a string matched by the regex)

reobj = re.compile(regex)
match = reobj.search(subject)
if match:
    result = match.group()
else:
    result = ""

14.用正则表达式对象获取捕获组所匹配的子串(Use regex object to get the part of a string matched by a capturing group)

reobj = re.compile(regex)
match = reobj.search(subject)
if match:
    result = match.group(1)
else:
    result = ""

15.用正则表达式对象获取有名组所匹配的子串(Use regex object to get the part of a string matched by a named group)

reobj = re.compile(regex)
match = reobj.search(subject)
if match:
    result = match.group("groupname")
else:
    result = ""

16.用正则表达式对象获取所有匹配子串并放入数组(Use regex object to get an array of all regex matches in a string)

reobj = re.compile(regex)
result = reobj.findall(subject)

17.通过正则表达式对象遍历所有匹配子串(Use regex object to iterate over all matches in a string)

reobj = re.compile(regex)
for match in reobj.finditer(subject):
    # match start: match.start()
    # match end (exclusive): match.end()
    # matched text: match.group()

字符串替换

1.替换所有匹配的子串

#用newstring替换subject中所有与正则表达式regex匹配的子串
result = re.sub(regex, newstring, subject)

2.替换所有匹配的子串(使用正则表达式对象)

reobj = re.compile(regex)
result = reobj.sub(newstring, subject)

字符串拆分

1.字符串拆分

result = re.split(regex, subject)

2.字符串拆分(使用正则表示式对象)

reobj = re.compile(regex)
result = reobj.split(subject)

以上这篇常见python正则用法的简单实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

How does the homogenous nature of arrays affect performance?How does the homogenous nature of arrays affect performance?Apr 25, 2025 am 12:13 AM

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

What are some best practices for writing executable Python scripts?What are some best practices for writing executable Python scripts?Apr 25, 2025 am 12:11 AM

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

How do NumPy arrays differ from the arrays created using the array module?How do NumPy arrays differ from the arrays created using the array module?Apr 24, 2025 pm 03:53 PM

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

How does the use of NumPy arrays compare to using the array module arrays in Python?How does the use of NumPy arrays compare to using the array module arrays in Python?Apr 24, 2025 pm 03:49 PM

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

How does the ctypes module relate to arrays in Python?How does the ctypes module relate to arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor