str='python String function'
生成字符串变量str='python String function'
字符串长度获取:len(str)
例:print '%s length=%d' % (str,len(str))
字母处理
全部大写:str.upper()
全部小写:str.lower()
大小写互换:str.swapcase()
首字母大写,其余小写:str.capitalize()
首字母大写:str.title()
print '%s lower=%s' % (str,str.lower())
print '%s upper=%s' % (str,str.upper())
print '%s swapcase=%s' % (str,str.swapcase())
print '%s capitalize=%s' % (str,str.capitalize())
print '%s title=%s' % (str,str.title())
格式化相关
获取固定长度,右对齐,左边不够用空格补齐:str.ljust(width)
获取固定长度,左对齐,右边不够用空格补齐:str.ljust(width)
获取固定长度,中间对齐,两边不够用空格补齐:str.ljust(width)
获取固定长度,右对齐,左边不足用0补齐
print '%s ljust=%s' % (str,str.ljust(20))
print '%s rjust=%s' % (str,str.rjust(20))
print '%s center=%s' % (str,str.center(20))
print '%s zfill=%s' % (str,str.zfill(20))
字符串搜索相关
搜索指定字符串,没有返回-1:str.find('t')
指定起始位置搜索:str.find('t',start)
指定起始及结束位置搜索:str.find('t',start,end)
从右边开始查找:str.rfind('t')
搜索到多少个指定字符串:str.count('t')
上面所有方法都可用index代替,不同的是使用index查找不到会抛异常,而find返回-1
print '%s find nono=%d' % (str,str.find('nono'))
print '%s find t=%d' % (str,str.find('t'))
print '%s find t from %d=%d' % (str,1,str.find('t',1))
print '%s find t from %d to %d=%d' % (str,1,2,str.find('t',1,2))
#print '%s index nono ' % (str,str.index('nono',1,2))
print '%s rfind t=%d' % (str,str.rfind('t'))
print '%s count t=%d' % (str,str.count('t'))
字符串替换相关
替换old为new:str.replace('old','new')
替换指定次数的old为new:str.replace('old','new',maxReplaceTimes)
print '%s replace t to *=%s' % (str,str.replace('t', '*'))
print '%s replace t to *=%s' % (str,str.replace('t', '*',1))
字符串去空格及去指定字符
去两边空格:str.strip()
去左空格:str.lstrip()
去右空格:str.rstrip()
去两边字符串:str.strip('d'),相应的也有lstrip,rstrip
str=' python String function '
print '%s strip=%s' % (str,str.strip())
str='python String function'
print '%s strip=%s' % (str,str.strip('d'))
按指定字符分割字符串为数组:str.split(' ')
默认按空格分隔
str='a b c de'
print '%s strip=%s' % (str,str.split())
str='a-b-c-de'
print '%s strip=%s' % (str,str.split('-'))
字符串判断相关
是否以start开头:str.startswith('start')
是否以end结尾:str.endswith('end')
是否全为字母或数字:str.isalnum()
是否全字母:str.isalpha()
是否全数字:str.isdigit()
是否全小写:str.islower()
是否全大写:str.isupper()
str='python String function'
print '%s startwith t=%s' % (str,str.startswith('t'))
print '%s endwith d=%s' % (str,str.endswith('d'))
print '%s isalnum=%s' % (str,str.isalnum())
str='pythonStringfunction'
print '%s isalnum=%s' % (str,str.isalnum())
print '%s isalpha=%s' % (str,str.isalpha())
print '%s isupper=%s' % (str,str.isupper())
print '%s islower=%s' % (str,str.islower())
print '%s isdigit=%s' % (str,str.isdigit())
str='3423'
print '%s isdigit=%s' % (str,str.isdigit())
还有其他常见的Python字符串处理 函数的话不定期更新。

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
