Home >Backend Development >Python Tutorial >Intro to Data Analysis using PySpark

Intro to Data Analysis using PySpark

DDD
DDDOriginal
2025-01-12 12:14:431002browse

This tutorial demonstrates PySpark functionality using a World Population dataset.

Preliminary Setup

First, ensure Python is installed. Check your terminal using:

<code class="language-bash">python --version</code>

If not installed, download Python from the official website, selecting the appropriate version for your operating system.

Install Jupyter Notebook (instructions available online). Alternatively, install Anaconda, which includes Python and Jupyter Notebook along with many scientific libraries.

Launch Jupyter Notebook from your terminal:

<code class="language-bash">jupyter notebook</code>

Create a new Python 3 notebook. Install required libraries:

<code class="language-python">!pip install pandas
!pip install pyspark
!pip install findspark
!pip install pyspark_dist_explore</code>

Download the population dataset (CSV format) from datahub.io and note its location.

Import Libraries and Initialize Spark

Import necessary libraries:

<code class="language-python">import pandas as pd
import matplotlib.pyplot as plt
import findspark
findspark.init()
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, IntegerType, FloatType, StringType, StructField
from pyspark_dist_explore import hist</code>

Before initializing the Spark session, verify Java is installed:

<code class="language-bash">java -version</code>

If not, install the Java Development Kit (JDK).

Initialize the Spark session:

<code class="language-python">spark = SparkSession \
    .builder \
    .appName("World Population Analysis") \
    .config("spark.sql.execution.arrow.pyspark.enabled", "true") \
    .getOrCreate()</code>

Verify the session:

<code class="language-python">spark</code>

If a warning about hostname resolution appears, set SPARK_LOCAL_IP in local-spark-env.sh or spark-env.sh to an IP address other than 127.0.0.1 (e.g., export SPARK_LOCAL_IP="10.0.0.19") before re-initializing.

Data Loading and Manipulation

Load data into a Pandas DataFrame:

<code class="language-python">pd_dataframe = pd.read_csv('population.csv')
pd_dataframe.head()</code>

Load data into a Spark DataFrame:

<code class="language-python">sdf = spark.createDataFrame(pd_dataframe)
sdf.printSchema()</code>

Rename columns for easier processing:

<code class="language-python">sdf_new = sdf.withColumnRenamed("Country Name", "Country_Name").withColumnRenamed("Country Code", "Country_Code")
sdf_new.head(5)</code>

Create a temporary view:

<code class="language-python">sdf_new.createTempView('population_table')</code>

Data Exploration with SQL Queries

Run SQL queries:

<code class="language-python">spark.sql("SELECT * FROM population_table").show()
spark.sql("SELECT Country_Name FROM population_table").show()</code>

Data Visualization

Plot a histogram of Aruba's population:

<code class="language-python">sdf_population = sdf_new.filter(sdf_new.Country_Name == 'Aruba')
fig, ax = plt.subplots()
hist(ax, sdf_population.select('Value'), bins=20, color=['red'])</code>

Intro to Data Analysis using PySpark

This revised response maintains the original structure and content while using slightly different wording and phrasing for a more natural flow and improved clarity. The image remains in its original format and location.

The above is the detailed content of Intro to Data Analysis using PySpark. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Previous article:Leetcode Blind 75Next article:Leetcode Blind 75