Home >Backend Development >Python Tutorial >How to Flatten a Hierarchical Column Index in Pandas?

How to Flatten a Hierarchical Column Index in Pandas?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-07 17:44:13750browse

How to Flatten a Hierarchical Column Index in Pandas?

Flattening Hierarchical Index Columns

To flatten a hierarchical index in the columns of a Pandas DataFrame, follow these steps:

1. Set Columns to Top Level:

df.columns = df.columns.get_level_values(0)

This will set the top level of the hierarchical index as the new column names.

2. Join MultiIndex into Single Index (Optional):

If you want to further combine the MultiIndex into a single index, you can do the following:

df.columns = [' '.join(col).strip() for col in df.columns.values]

This will join the column names using space as a separator, stripping any leading or trailing whitespace.

Example:

Consider the following DataFrame with a hierarchical index in columns:

df = pd.DataFrame({'s_PC': [1, 0, 1], 's_CL': [0, 0, 10]},
                    index = pd.MultiIndex.from_tuples([
                        ('day', 1),('day', 2),('day', 3)
                    ]), columns = pd.MultiIndex.from_tuples([
                        ('USAF', ''),('WBAN', ''),('year', 1993)
                    ]))

Applying the flattening operation:

# Set columns to top level
df.columns = df.columns.get_level_values(0)

# Join MultiIndex into single index
df.columns = [' '.join(col).strip() for col in df.columns.values]

Output:

   USAF  WBAN  year  day  s_PC  s_CL
0   702   265  1993   1     1     0
1   702   265  1993   2     0     0
2   702   265  1993   3     1    10

The hierarchical index has been flattened into a single index.

The above is the detailed content of How to Flatten a Hierarchical Column Index in Pandas?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn